Stormwater Management Facilities Report

Hospice Center 2300 Technology Dr. O'Fallon, Missouri

Eric S. Kirchner, P.E. P.E. 2001004618 State of Missouri Registered Professional Engineer for Cochran

February 3, 2023 Revised: March 15, 2023 Revised: April 6, 2023 Revised: April 24, 2023

Architecture
Civil Engineering
Land Surveying
Site Development
Construction Inspection Testing

Wentzville, Missouri 63385

Telephone: 636-332-4574 • Fax: 636-327-0760

E-Mail: mail@cochraneng.com

Cochran Project No. M22-8498

Table of Contents Drainage and Detention Calculations Site Improvement Plans – Hospice Center

Dry Basin #1	Section		
Detention Calculations	1		
Calculations – BMP #1 Low Flow Orifice Open	2		
Low Flow Orifice Blocked			
Extended Detention			
Drainage Area Maps	3		
Storm Sewer Hydrology	4		
Storm Sewer Hydraulics Downspout Collector Calculation	5		
Swale Calculation	6		
WQ _v Calculation	7		
Appendix – Supporting Documents NRCS Hydrologic Soils Group Map NRCS Saturated Hydraulic Conductivity			

Section 1

Detention Calculations

DETENTION CALCULATIONS FOR BMP #1 FOR HOSPICE CENTER O'FALLON, MISSOURI MARCH 15, 2023 PROJECT NO. M22-8489

The following detention calculations have been performed for final design for the Hospice Center in O'Fallon, Missouri. Said calculations were performed in accordance with the City of O'Fallon Standards. All calculations and design were performed with the aid of AutoCAD Civil 3D Software. Existing, proposed, and routed hydrographs for the 2-year, 15-year, 25-year, 100-year storms are attached.

BMP #1 CALCULATIONS SUMMARY:

A summary of the detention calculations is shown below. All detention calculations, including release rates and volumes, are included in this report. Drainage area maps are also included at the end of this report.

Year of Storm Frequency	Existing Peak Runoff (cfs) [A]	Proposed Peak Runoff (cfs) [B]	Required Detention (cfs) [B] – [A]	Tributary/Runoff to Basin (cfs) [C]	Basin Peak Release Rate (cfs) [D]	Actual Detention (cfs) [C] – [D]
2	3.12	9.15	6.03	8.50	0.015	8.485
15	4.99	15.39	10.40	14.31	0.020	14.290
25	5.26	16.21	10.95	15.07	0.020	15.050
100	5.94	17.23	11.29	16.02	0.021	15.999

The 100-year storm, with low flow blocked reaches a peak elevation of 578.36 in the basin; the basin berm elevation is 580.00 providing 1.64' freeboard.

Storm Water Handling for the Hospice Center will be provided in BMP #1 at the northern portion of the property. The detention basin was designed so that the existing flow of the site would not be exceeded by the proposed flow of the site. Due to programming of the AutoCAD Civil 3D Software, the heading and title for the 15-year event is listed as the 3-year event on all hydrograph sheets. All necessary calculations are attached.

Water quality for the site is accomplished by utilizing extended detention for BMP #1. The 24-hour lag time for the 1-year storm was calculated to be 26.27 hours.

Existing Onsite Runoff (2-year storm)

Total Development = 2.00 acres Existing Runoff (cfs) = 3.12 cfs

Proposed On-Site Runoff (2-year storm)

Total Development = 2.00 acres Proposed Runoff (cfs) = 9.15 cfs

Tributary Runoff to Basin (2-year storm)

Total On-Site Development = 1.65 acres

Proposed "C" Factor= Tributary area is made of subareas which each have separate runoff coefficients, see subarea hydrograph for specific runoff coefficient.

Proposed ToC = Tributary area is made of subareas which each have separate time of concentrations, see subarea hydrograph for specific time of concentrations.

Proposed Runoff (cfs) = 8.50 cfs

<u>Required Detention</u> (2-year storm)

Required Detained Runoff = Developed Runoff – Undeveloped Runoff Required Detained Runoff = **6.03 cfs**

Actual Detained Run-off = Tributary run-off to basin – Peak detention basin release rate Actual Detained Run-off = 8.504 cfs – 0.015 cfs = 8.489 cfs Actual High Water Elevation = 575.32 ft

Total Stored Volume = 509 ft³

Existing Onsite Runoff (15-year storm)

Total Development = 2.00 acres Existing Runoff (cfs) = 4.99 cfs

Proposed On-Site Runoff (15-year storm)

Total Development = 2.00 acres Proposed Runoff (cfs) = 15.39 cfs

Tributary Runoff to Basin (15-year storm)

Total On-Site Development = 1.65 acres

Proposed "C" Factor= Tributary area is made of subareas which each have separate runoff coefficients, see subarea hydrograph for specific runoff coefficient.

Proposed ToC = Tributary area is made of subareas which each have separate time of concentrations, see subarea hydrograph for specific time of concentrations.

Proposed Runoff (cfs) = 14.31 cfs

Required Detention (15-year storm)

Required Detained Runoff = Developed Runoff – Undeveloped Runoff Required Detained Runoff = **10.40 cfs**

Actual Detained Run-off = Tributary run-off to basin – Peak detention basin release rate Actual Detained Run-off = 14.310 cfs - 0.020 cfs = 14.290 cfs

Actual High Water Elevation = 575.53 ft

Total Stored Volume = 857 ft^3

Existing Onsite Runoff (25-year storm)

Total Development = 2.00 acres Existing Runoff (cfs) = 5.26 cfs

Proposed Runoff (25-year storm)

Total Development = 2.00 acres Proposed Runoff (cfs) = 16.21 cfs

<u>Tributary Runoff to Basin</u> (25-year storm)

Total On-Site Development = 1.65 acres

Proposed "C" Factor= Tributary area is made of subareas which each have separate runoff coefficients, see subarea hydrograph for specific runoff coefficient.

Proposed ToC = Tributary area is made of subareas which each have separate time of concentrations, see subarea hydrograph for specific time of concentrations.

Proposed Runoff (cfs) = 15.07 cfs

Required Detention (25-year storm)

Required Detained Runoff = Developed Runoff – Undeveloped Runoff Required Detained Runoff = **10.95 cfs**

Actual Detained Run-off = Tributary run-off to basin – Peak detention basin release rate Actual Detained Run-off = 15.070 - 0.020 cfs = 15.050 cfs Actual High Water Elevation = 575.56 ft

Total Stored Volume = 903 ft³

Existing Onsite Runoff (100-year storm)

Total Development = 2.00 acres Existing Runoff (cfs) = 5.94 cfs

<u>Proposed Runoff</u> (100-year storm)

Total Development = 2.00 acres Proposed Runoff (cfs) = 17.23 cfs

Tributary Runoff to Basin (100-year storm)

Total On-Site Development = 1.65 acres

Proposed "C" Factor= Tributary area is made of subareas which each have separate runoff coefficients, see subarea hydrograph for specific runoff coefficient.

Proposed ToC = Tributary area is made of subareas which each have separate time of concentrations, see subarea hydrograph for specific time of concentrations.

Proposed Runoff (cfs) = 16.02 cfs

Required Detention (100-year storm)

Required Detained Runoff = Developed Runoff – Undeveloped Runoff Required Detained Runoff = **20.99 cfs**

Actual Detained Run-off = Tributary run-off to basin – Peak detention basin release rate Actual Detained Run-off = 16.020 cfs - 0.021 cfs = 15.999 cfs Actual High Water Elevation = 575.60 ft

Total Stored Volume = 960 ft³

Section 2

Calculations – BMP #1

Low Flow Orifice Open

Low Flow Orifice Blocked

Extended Detention

Hydrograph Return Period Recap

		Inflow				Hydrograph					
О.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	Rational			0.483	0.813		0.609	0.856		0.910	EX_TRIB#1
2	Rational			1.263	2.018		1.633	2.129		2.402	EX_TRIB#2
3	Rational			0.830	1.326		1.073	1.399		1.578	EX_TRIB#3
4	Rational			1.028	1.643		1.329	1.734		1.956	EX_TRIB#4
6	Rational			8.504	14.31		10.73	15.07		16.02	P_TRIB#1
7	Rational			0.460	0.774		0.580	0.815		0.866	P_TRIB#2
3	Rational			0.184	0.310		0.232	0.326		0.347	P_TRIB#3
10	Reservoir	6		0.015	0.020		0.017	0.020		0.021	ROUTED THRU BASIN
12	Combine	1, 2, 3, 4,		3.120	4.986		4.035	5.262		5.936	EX_TOTAL
13	Combine	6, 7, 8,		9.148	15.39		11.54	16.21		17.23	P_TOTAL

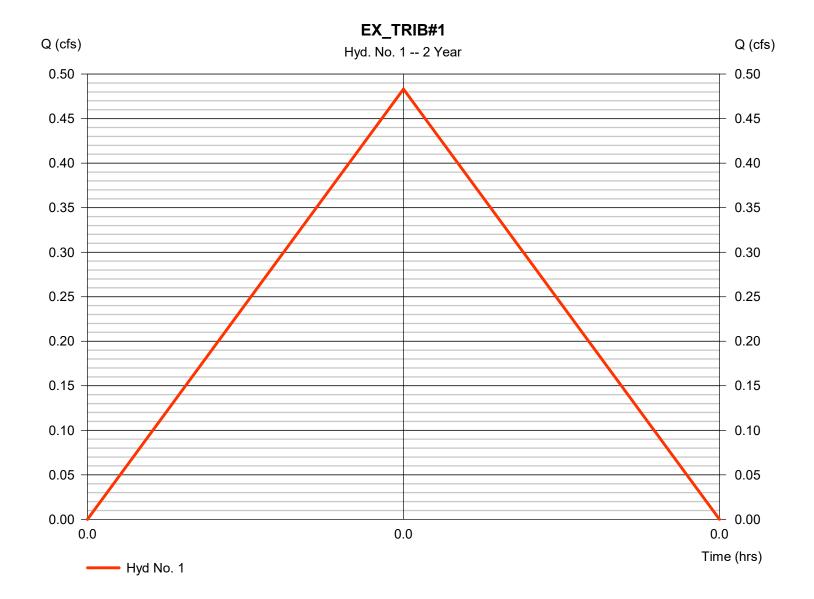
Proj. file: M22-8498_DETENTION_2023-01-24.gpw

Wednesday, 03 / 8 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	0.483	1	1	29				EX_TRIB#1
2	Rational	1.263	1	2	152				EX_TRIB#2
3	Rational	0.830	1	2	100				EX_TRIB#3
4	Rational	1.028	1	2	123				EX_TRIB#4
6	Rational	8.504	1	1	510				P_TRIB#1
7	Rational	0.460	1	1	28				P_TRIB#2
8	Rational	0.184	1	1	11				P_TRIB#3
10	Reservoir	0.015	1	2	488	6	575.36	509	ROUTED THRU BASIN
12	Combine	3.120	1	2	403	1, 2, 3,			EX_TOTAL
13	Combine	9.148	1	1	549	4, 6, 7, 8,			P_TOTAL
14	Combine	0.654	1	1	526	7, 8, 10,			P_TOTAL W/ DETENTION
M2:	22-8498_DETENTION_2023-01-24.gpw Return Period: 2 Year Wednesday, 03 / 8 / 2023						y, 03 / 8 / 2023		

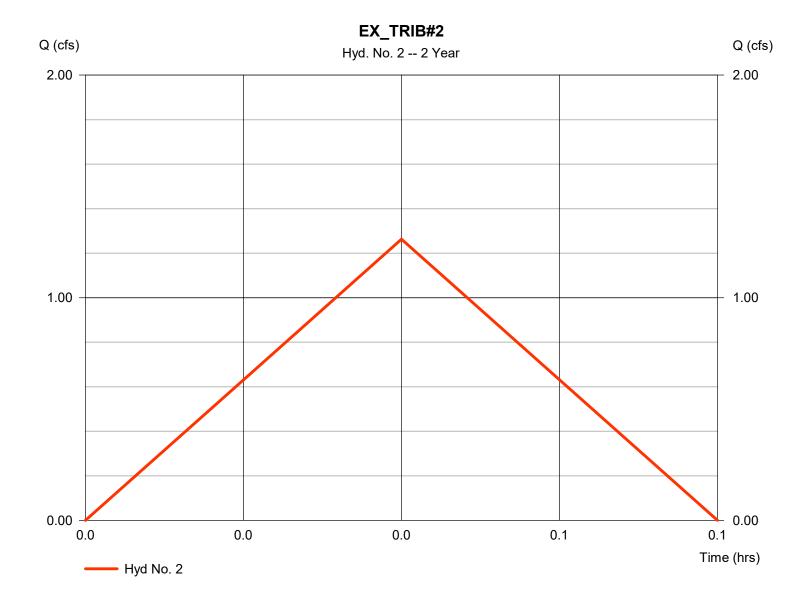

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

Hydrograph type Peak discharge = 0.483 cfs= Rational Storm frequency = 2 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 29 cuft Drainage area Runoff coeff. = 0.320 ac= 0.2= 7.550 in/hrTc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

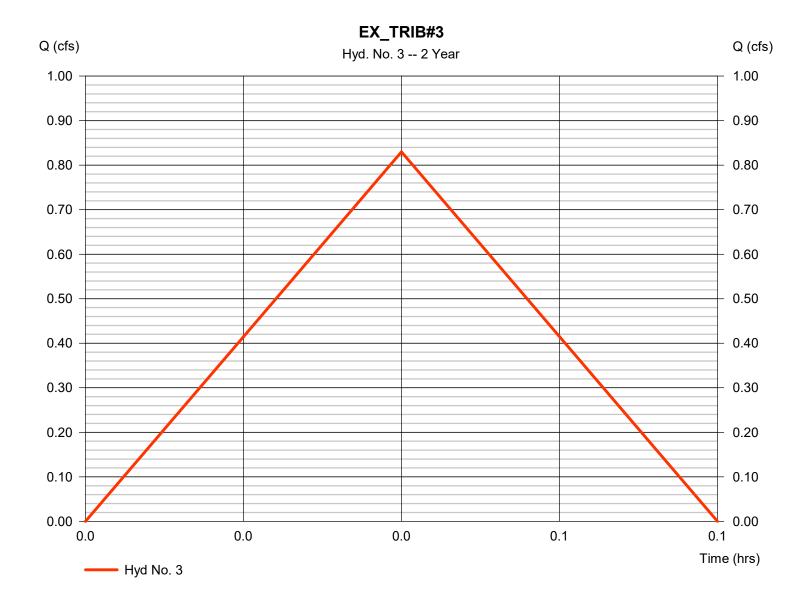

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

= 1.263 cfsHydrograph type = Rational Peak discharge Storm frequency = 2 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 152 cuft Drainage area Runoff coeff. = 0.2= 0.910 acIntensity = 6.937 in/hrTc by User $= 2.00 \, \text{min}$ IDF Curve = SampleFHA.idf Asc/Rec limb fact = 1/1

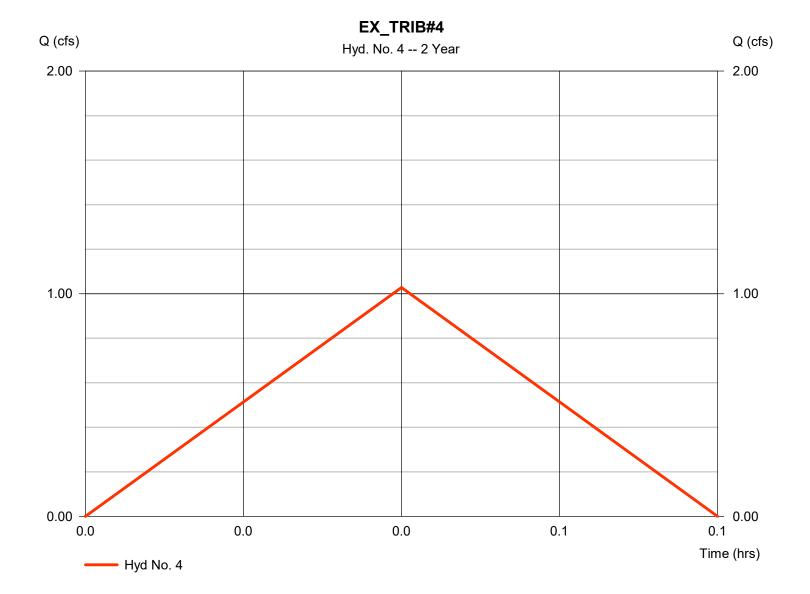

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

Hydrograph type = Rational Peak discharge = 0.830 cfsStorm frequency = 2 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 100 cuft Drainage area Runoff coeff. = 0.598= 0.200 acIntensity = 6.937 in/hrTc by User $= 2.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

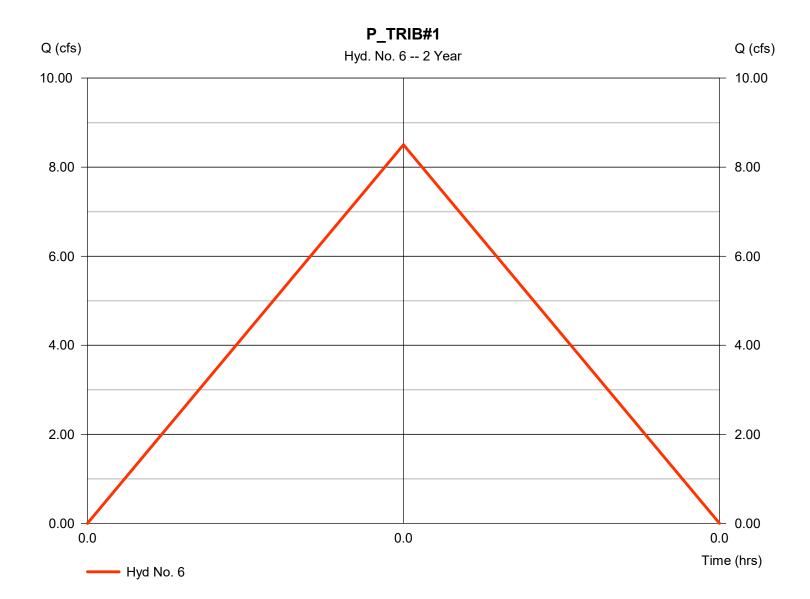

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX_TRIB#4

Hydrograph type = Rational Peak discharge = 1.028 cfsStorm frequency = 2 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 123 cuft Drainage area = 0.570 acRunoff coeff. = 0.26= 6.937 in/hr Intensity Tc by User $= 2.00 \, \text{min}$ IDF Curve = SampleFHA.idf Asc/Rec limb fact = 1/1

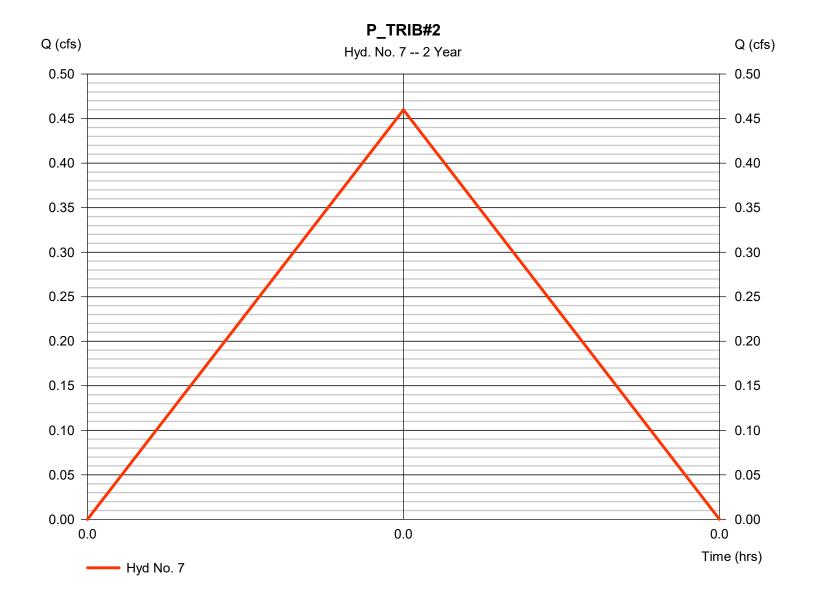

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

Hydrograph type = Rational Peak discharge = 8.504 cfsStorm frequency = 2 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 510 cuft Drainage area Runoff coeff. = 0.691= 1.630 acIntensity = 7.550 in/hrTc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

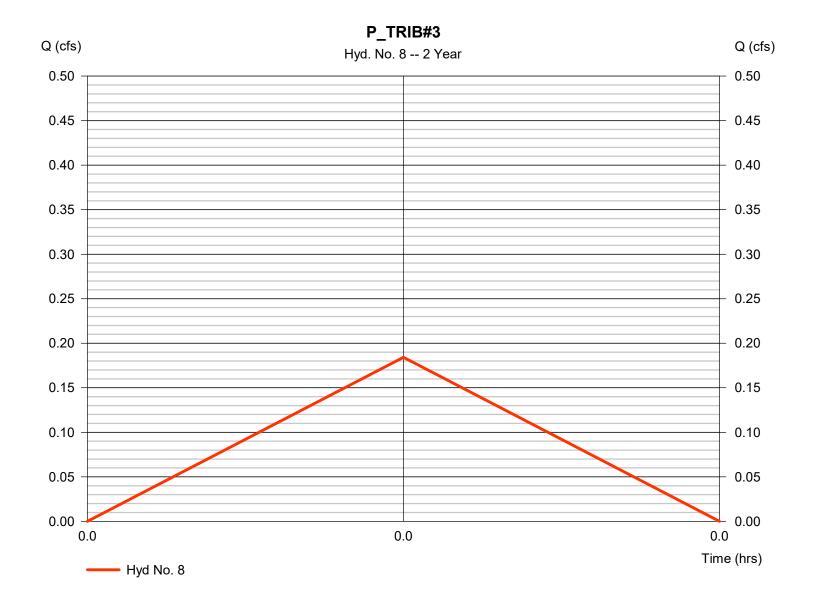

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type Peak discharge = 0.460 cfs= Rational Storm frequency = 2 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 28 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 7.550 in/hrTc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

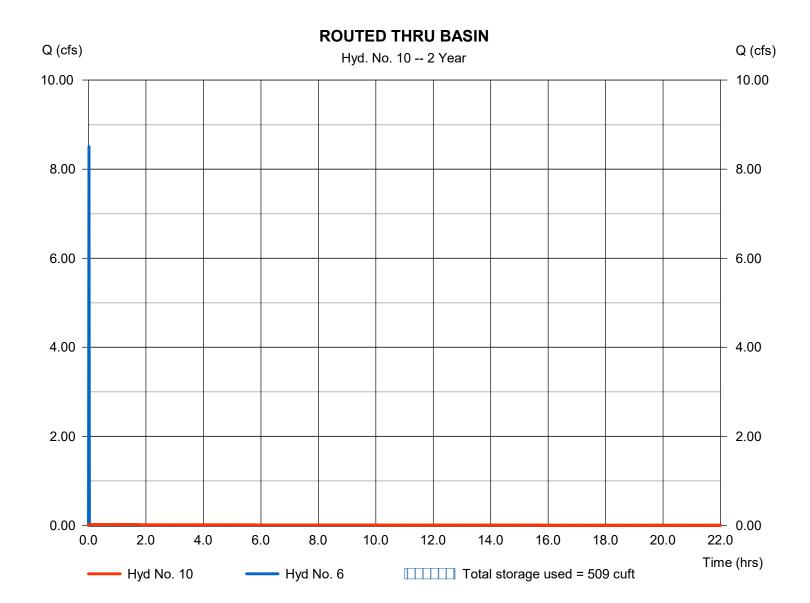
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

Hydrograph type Peak discharge = 0.184 cfs= Rational Storm frequency = 2 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 11 cuft Drainage area Runoff coeff. = 0.271= 0.090 acIntensity = 7.550 in/hrTc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 03 / 8 / 2023

Hyd. No. 10

ROUTED THRU BASIN

Hydrograph type Peak discharge = 0.015 cfs= Reservoir Storm frequency = 2 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 488 cuft Inflow hyd. No. Max. Elevation = 6 - P_TRIB#1 = 575.36 ftReservoir name = DETENTION POND Max. Storage = 509 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Pond No. 1 - DETENTION POND

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 575.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	575.00	700	0	0
1.00	576.00	2,303	1,424	1,424
2.00	577.00	3,500	2,880	4,304
3.00	578.00	4,720	4,094	8,399
4.00	579.00	5,863	5,281	13,680
5.00	580.00	7,106	6,474	20,153

Culvert / Orifice Structures Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	1.00	6.00	0.00	Crest Len (ft)	= 16.00	0.00	0.00	0.00
Span (in)	= 12.00	1.00	24.00	0.00	Crest El. (ft)	= 578.25	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 572.50	575.00	577.75	0.00	Weir Type	= Rect			
Length (ft)	= 91.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 3.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

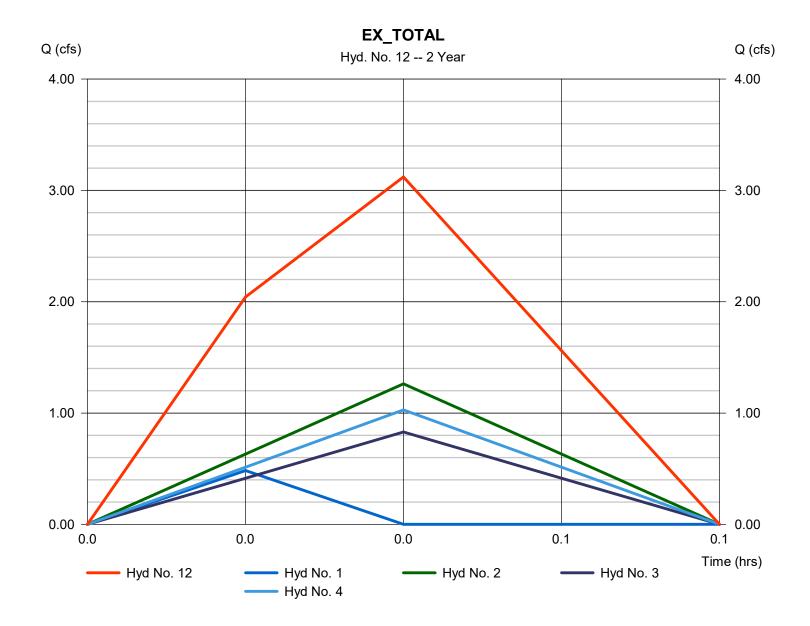
Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	575.00	0.00	0.00	0.00		0.00						0.000
0.10	142	575.10	5.35 ic	0.01 ic	0.00		0.00						0.006
0.20	285	575.20	5.35 ic	0.01 ic	0.00		0.00						0.010
0.30	427	575.30	5.35 ic	0.01 ic	0.00		0.00						0.013
0.40	570	575.40	5.35 ic	0.02 ic	0.00		0.00						0.016
0.50	712	575.50	5.35 ic	0.02 ic	0.00		0.00						0.018
0.60	854	575.60	5.35 ic	0.02 ic	0.00		0.00						0.020
0.70	997	575.70	5.35 ic	0.02 ic	0.00		0.00						0.021
0.80	1,139	575.80	5.35 ic	0.02 ic	0.00		0.00						0.023
0.90	1,282	575.90	5.35 ic	0.02 ic	0.00		0.00						0.024
1.00	1,424	576.00	5.35 ic	0.03 ic	0.00		0.00						0.026
1.10	1,712	576.10	5.35 ic	0.03 ic	0.00		0.00						0.027
1.20	2,000	576.20	5.35 ic	0.03 ic	0.00		0.00						0.028
1.30	2,288	576.30	5.35 ic	0.03 ic	0.00		0.00						0.029
1.40	2,576	576.40	5.35 ic	0.03 ic	0.00		0.00						0.031
1.50	2,864	576.50	5.35 ic	0.03 ic	0.00		0.00						0.032
1.60	3,152	576.60	5.35 ic	0.03 ic	0.00		0.00						0.033
1.70	3,440	576.70	5.35 ic	0.03 ic	0.00		0.00						0.034
1.80	3,728	576.80	5.35 ic	0.03 ic	0.00		0.00						0.035
1.90	4,016	576.90	5.35 ic	0.04 ic	0.00		0.00						0.036
2.00	4,304	577.00	5.35 ic	0.04 ic	0.00		0.00						0.037
2.10	4,714	577.10	5.35 ic	0.04 ic	0.00		0.00						0.038
2.20	5,123	577.20	5.35 ic	0.04 ic	0.00		0.00						0.039
2.30	5,533	577.30	5.35 ic	0.04 ic	0.00		0.00						0.039
2.40	5,942	577.40	5.35 ic	0.04 ic	0.00		0.00						0.040
2.50	6,352	577.50	5.35 ic	0.04 ic	0.00		0.00						0.041
2.60	6,761	577.60	5.35 ic	0.04 ic	0.00		0.00						0.042
2.70	7,171	577.70	5.35 ic	0.04 ic	0.00		0.00						0.043
2.80	7,580	577.80	5.35 ic	0.04 ic	0.08 ic		0.00						0.119
2.90	7,989	577.90	5.35 ic	0.04 ic	0.39 ic		0.00						0.439
3.00	8,399	578.00	5.35 ic	0.05 ic	0.85 ic		0.00						0.896
3.10	8,927	578.10	5.35 ic	0.05 ic	1.41 ic		0.00						1.456
3.20	9,455	578.20	5.35 ic	0.05 ic	2.06 ic		0.00						2.102
3.30	9,983	578.30	5.35 ic	0.05 ic	2.64 ic		0.59						3.279
3.40	10,511	578.40	6.18 ic	0.04 ic	3.04 ic		3.09						6.181
3.50	11,039	578.50	8.33 oc	0.01 ic	2.05 ic		6.27 s						8.330
3.60	11,567	578.60	8.44 oc	0.01 ic	1.35 ic		7.09 s						8.442
	,										Continue	oo on nov	

Continues on next page...

DETENTION POND Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.70	12,095	578.70	8.52 oc	0.01 ic	0.99 ic		7.52 s						8.515
3.80	12,623	578.80	8.58 oc	0.00 ic	0.77 ic		7.79 s						8.568
3.90	13,152	578.90	8.64 oc	0.00 ic	0.63 ic		8.00 s						8.630
4.00	13,680	579.00	8.69 oc	0.00 ic	0.52 ic		8.15 s						8.677
4.10	14,327	579.10	8.75 oc	0.00 ic	0.44 ic		8.26 s						8.709
4.20	14,974	579.20	8.80 oc	0.00 ic	0.39 ic		8.41 s						8.795
4.30	15,622	579.30	8.85 oc	0.00 ic	0.34 ic		8.50 s						8.839
4.40	16,269	579.40	8.91 oc	0.00 ic	0.30 ic		8.56 s						8.856
4.50	16,917	579.50	8.96 oc	0.00 ic	0.27 ic		8.61 s						8.879
4.60	17,564	579.60	9.01 oc	0.00 ic	0.24 ic		8.71 s						8.955
4.70	18,211	579.70	9.06 oc	0.00 ic	0.22 ic		8.77 s						8.992
4.80	18,859	579.80	9.11 oc	0.00 ic	0.20 ic		8.90 s						9.108
4.90	19,506	579.90	9.16 oc	0.00 ic	0.19 ic		8.90 s						9.084
5.00	20,153	580.00	9.21 oc	0.00 ic	0.17 ic		8.90 s						9.076

...End

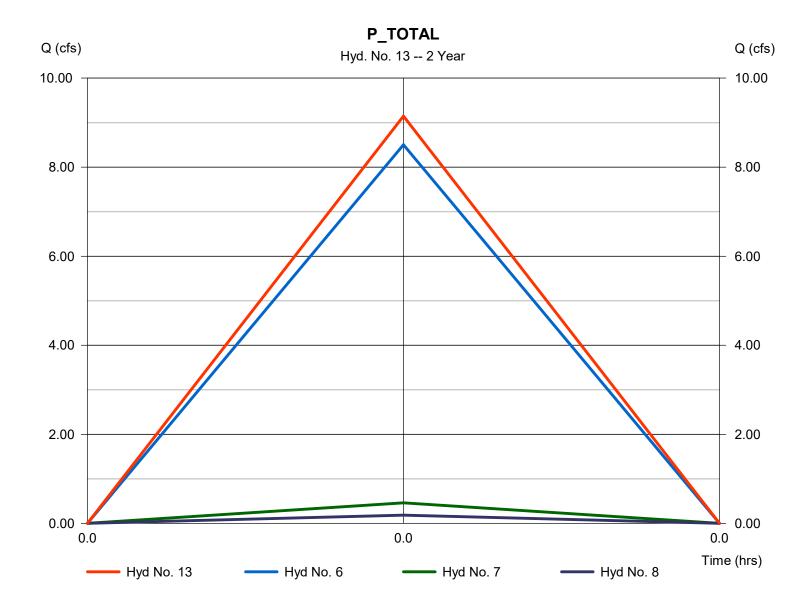

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX_TOTAL

Hydrograph type = Combine Peak discharge = 3.120 cfsTime to peak Storm frequency = 2 yrs= 0.03 hrsTime interval = 1 min Hyd. volume = 403 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 2.000 ac

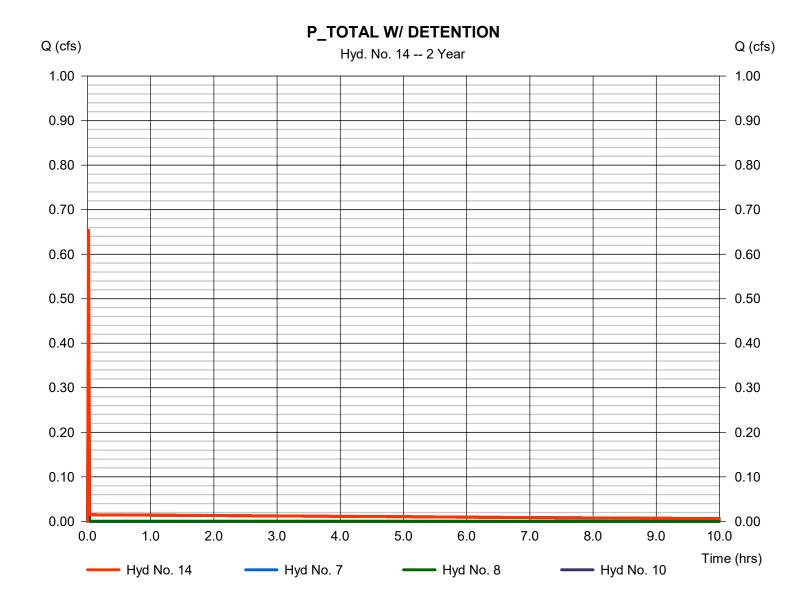

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P_TOTAL

Hydrograph type = Combine Peak discharge = 9.148 cfsTime to peak Storm frequency = 2 yrs= 0.02 hrsTime interval = 1 min Hyd. volume = 549 cuft Inflow hyds. = 6, 7, 8 = 2.010 acContrib. drain. area


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

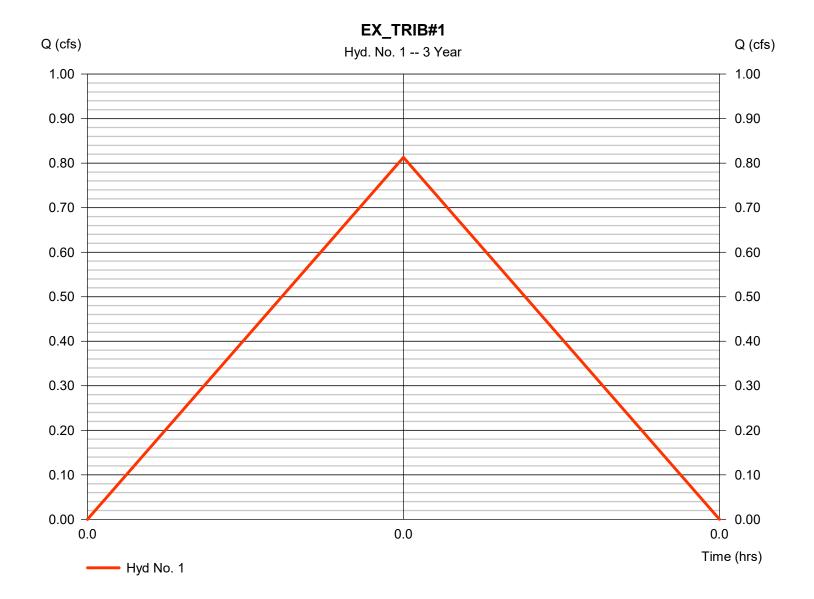
P TOTAL W/ DETENTION

Hydrograph type = Combine Peak discharge = 0.654 cfsStorm frequency = 2 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 526 cuft Inflow hyds. = 7, 8, 10 Contrib. drain. area = 0.380 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

2 Rati 3 Rati 4 Rati 6 Rati 7 Rati 8 Rati 10 Res 12 Con 13 Con	ntional ntional ntional ntional ntional	0.813 2.018 1.326 1.643 14.31 0.774	1 1 1 1	1 2 2 2	49 242 159				EX_TRIB#1
3 Rati 4 Rati 6 Rati 7 Rati 8 Rati 10 Res 12 Con 13 Con	itional itional itional	1.326 1.643 14.31 0.774	1	2					
4 Rati 6 Rati 7 Rati 10 Res 12 Con 13 Con	ntional ntional	1.643 14.31 0.774	1		159				EX_TRIB#2
6 Rati 7 Rati 8 Rati 10 Res 12 Con 13 Con	itional itional	14.31 0.774		2					EX_TRIB#3
7 Rati 8 Rati 10 Res 12 Con 13 Con	itional	0.774	1		197				EX_TRIB#4
Rati Res Con Con				1	858				P_TRIB#1
10 Res 12 Con 13 Con	tional		1	1	46				P_TRIB#2
12 Con 13 Con		0.310	1	1	19				P_TRIB#3
13 Con	eservoir	0.020	1	2	836	6	575.60	857	ROUTED THRU BASIN
	mbine	4.986	1	2	647	1, 2, 3,			EX_TOTAL
14 Con	mbine	15.39	1	1	923	6, 7, 8,			P_TOTAL
	mbine	1.097	1	1	901	7, 8, 10,			P_TOTAL W/ DETENTION
M22-84									

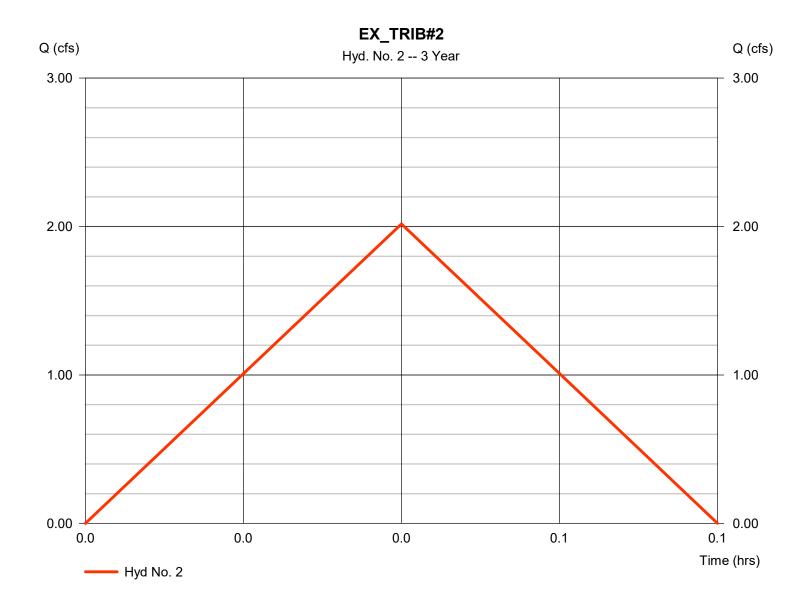

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

Hydrograph type Peak discharge = 0.813 cfs= Rational Storm frequency = 3 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 49 cuft Drainage area Runoff coeff. = 0.320 ac= 0.2Intensity = 12.701 in/hr Tc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

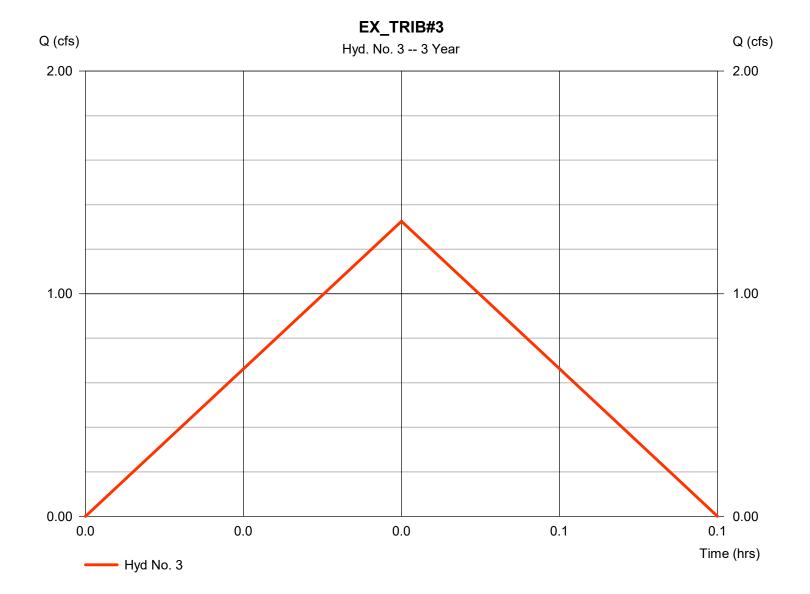

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

Hydrograph type = Rational Peak discharge = 2.018 cfsStorm frequency = 3 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 242 cuft Drainage area Runoff coeff. = 0.2= 0.910 ac= 11.085 in/hr Tc by User = 2.00 min Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

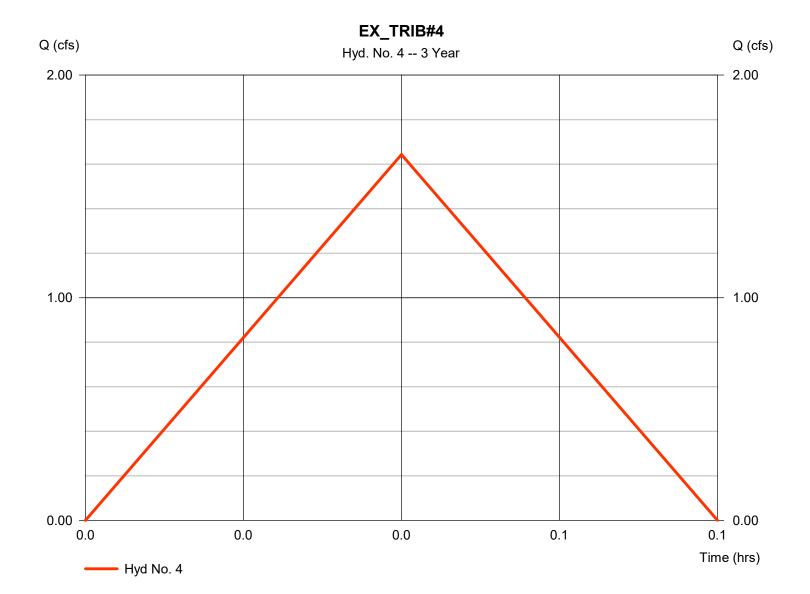

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

= 1.326 cfsHydrograph type = Rational Peak discharge Storm frequency = 3 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 159 cuft Drainage area Runoff coeff. = 0.598= 0.200 acIntensity = 11.085 in/hr Tc by User $= 2.00 \, \text{min}$ IDF Curve Asc/Rec limb fact = SampleFHA.idf = 1/1

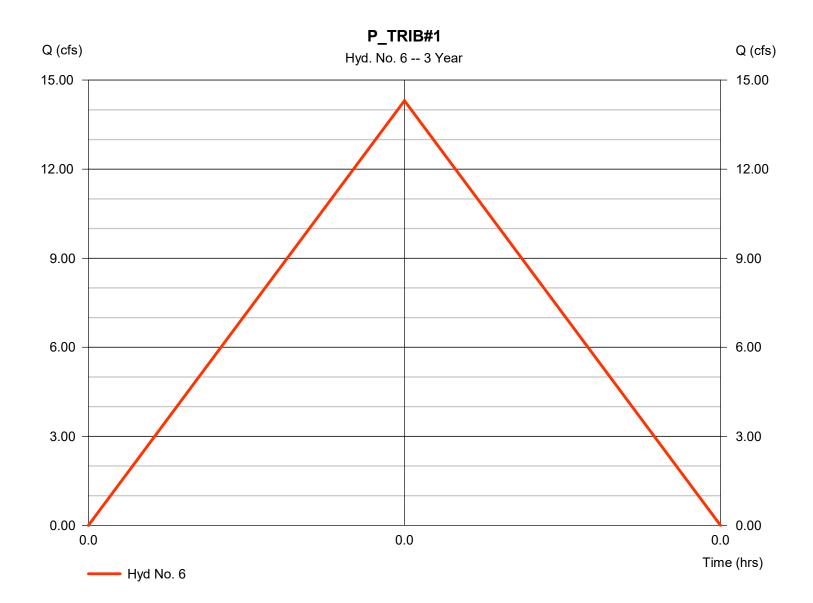

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX_TRIB#4

Hydrograph type = Rational Peak discharge = 1.643 cfsStorm frequency = 3 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 197 cuft Drainage area Runoff coeff. = 0.26= 0.570 ac= 11.085 in/hr Tc by User $= 2.00 \, \text{min}$ Intensity IDF Curve Asc/Rec limb fact = SampleFHA.idf = 1/1

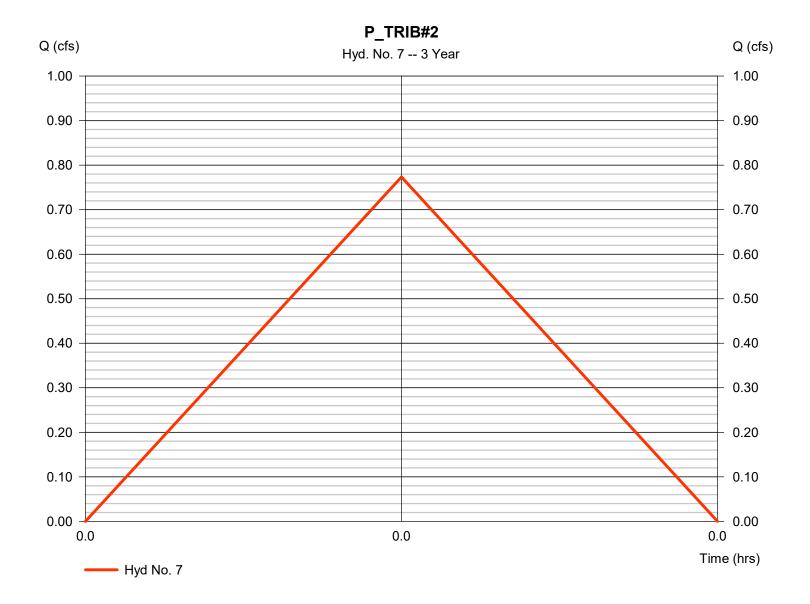

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

Hydrograph type = Rational Peak discharge = 14.31 cfsStorm frequency = 3 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 858 cuft Drainage area Runoff coeff. = 1.630 ac= 0.691Intensity = 12.701 in/hr Tc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

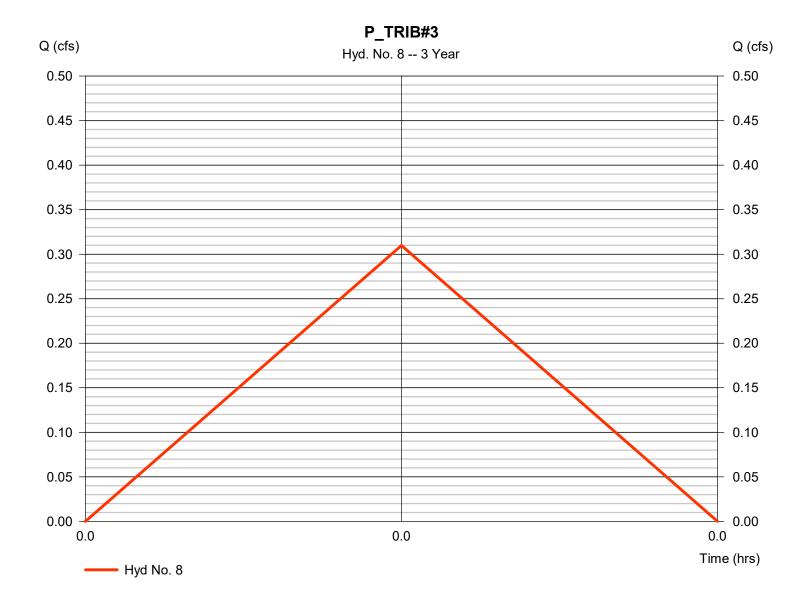

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type Peak discharge = 0.774 cfs= Rational Storm frequency = 3 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 46 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 12.701 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

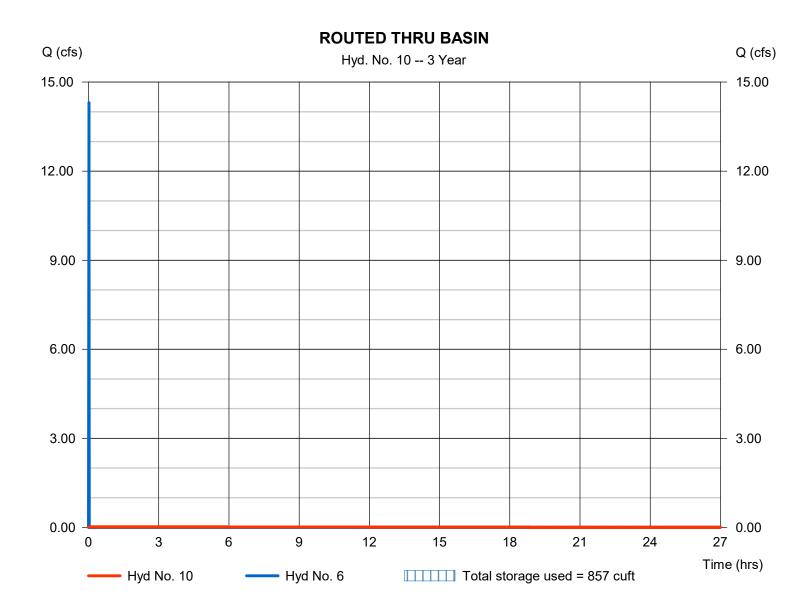
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

= 0.310 cfsHydrograph type Peak discharge = Rational Storm frequency = 3 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 19 cuft Drainage area Runoff coeff. = 0.271= 0.090 ac= 12.701 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 03 / 8 / 2023

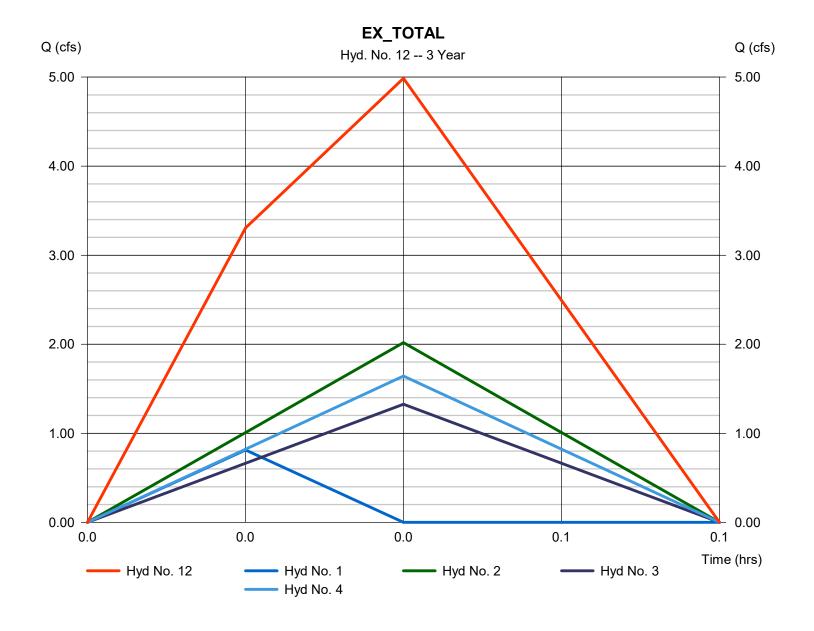
Hyd. No. 10

ROUTED THRU BASIN

Hydrograph type Peak discharge = 0.020 cfs= Reservoir Storm frequency = 3 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 836 cuft = 6 - P_TRIB#1 Inflow hyd. No. Max. Elevation = 575.60 ftReservoir name = DETENTION POND Max. Storage = 857 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

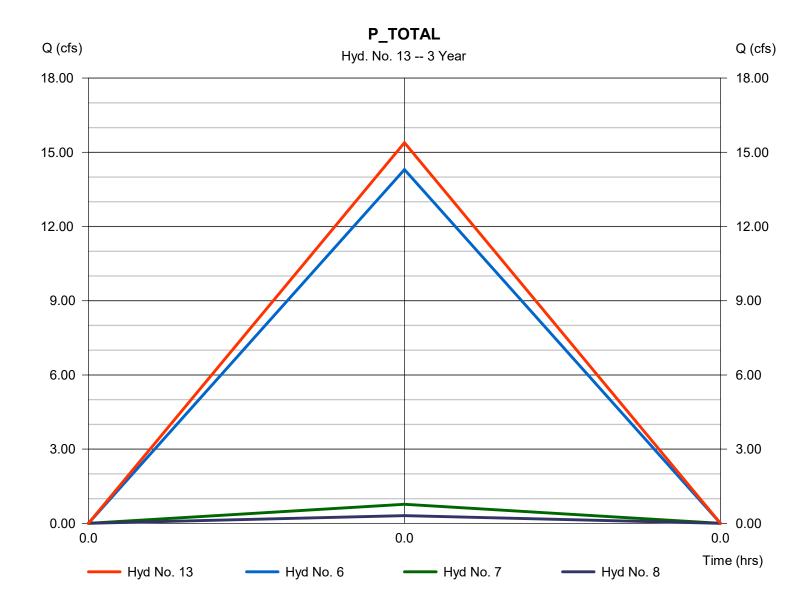

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX TOTAL

Hydrograph type = Combine
Storm frequency = 3 yrs
Time interval = 1 min
Inflow hyds. = 1, 2, 3, 4

Peak discharge = 4.986 cfs
Time to peak = 0.03 hrs
Hyd. volume = 647 cuft
Contrib. drain. area = 2.000 ac

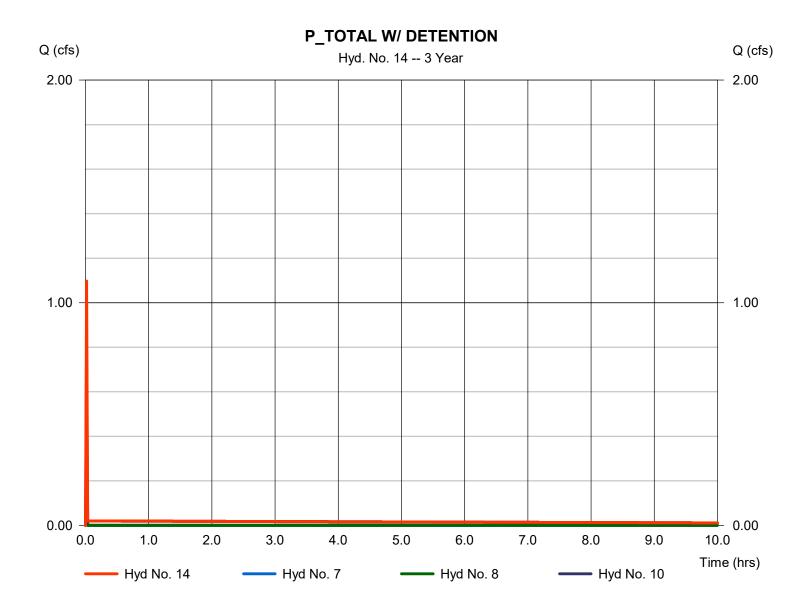

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P TOTAL

Hydrograph type = Combine Peak discharge = 15.39 cfsStorm frequency = 3 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 923 cuft Inflow hyds. = 6, 7, 8 Contrib. drain. area = 2.010 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

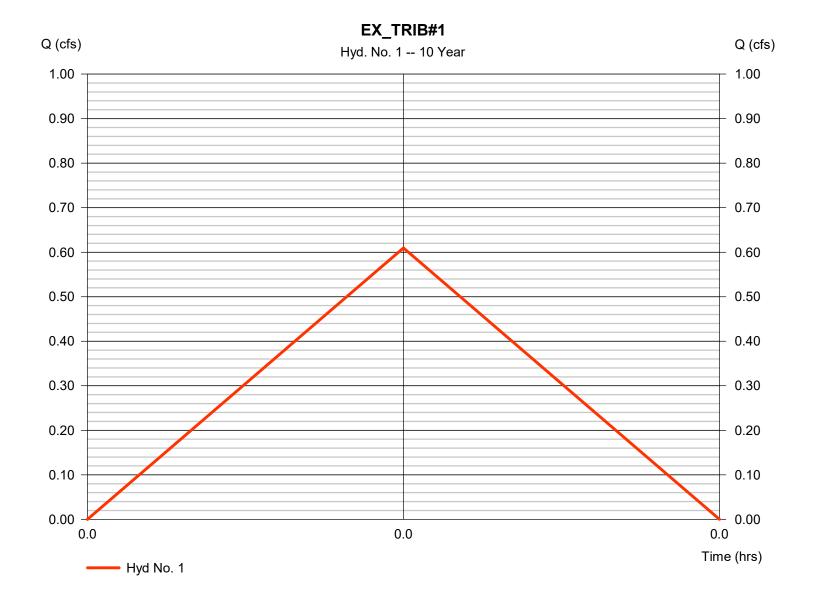
P TOTAL W/ DETENTION

Hydrograph type = Combine Peak discharge = 1.097 cfsStorm frequency Time to peak = 3 yrs= 0.02 hrsTime interval = 1 min Hyd. volume = 901 cuft Inflow hyds. = 7, 8, 10 Contrib. drain. area = 0.380 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	0.609	1	1	37				EX_TRIB#1
2	Rational	1.633	1	2	196				EX_TRIB#2
3	Rational	1.073	1	2	129				EX_TRIB#3
4	Rational	1.329	1	2	160				EX_TRIB#4
6	Rational	10.73	1	1	644				P_TRIB#1
7	Rational	0.580	1	1	35				P_TRIB#2
8	Rational	0.232	1	1	14				P_TRIB#3
10	Reservoir	0.017	1	2	621	6	575.45	642	ROUTED THRU BASIN
12	Combine	4.035	1	2	521	1, 2, 3,			EX_TOTAL
13	Combine	11.54	1	1	692	6, 7, 8,			P_TOTAL
14	Combine	0.823	1	1	670	7, 8, 10,			P_TOTAL W/ DETENTION
M22-8498_DETENTION_2023-01-24.gpw					Return I	Return Period: 10 Year			y, 03 / 8 / 2023

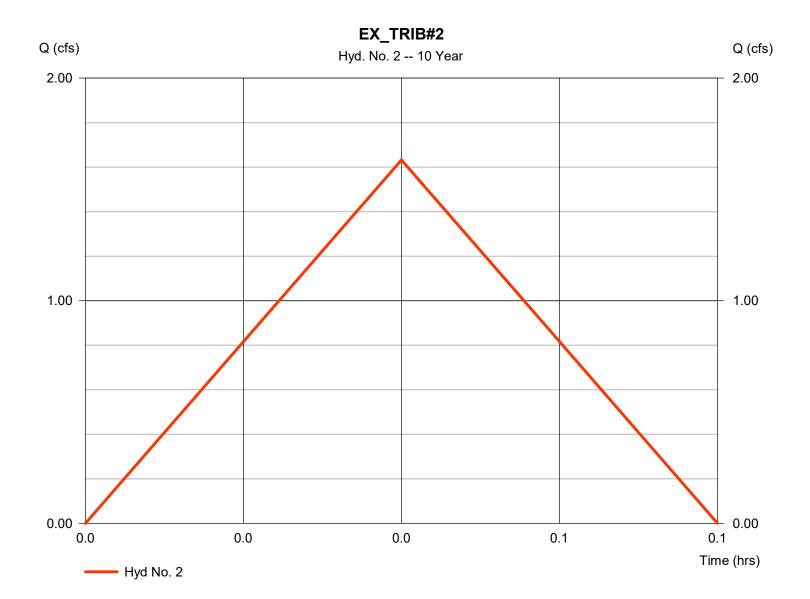

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

Hydrograph type Peak discharge = 0.609 cfs= Rational Storm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 37 cuft Drainage area Runoff coeff. = 0.2= 0.320 ac= 9.522 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

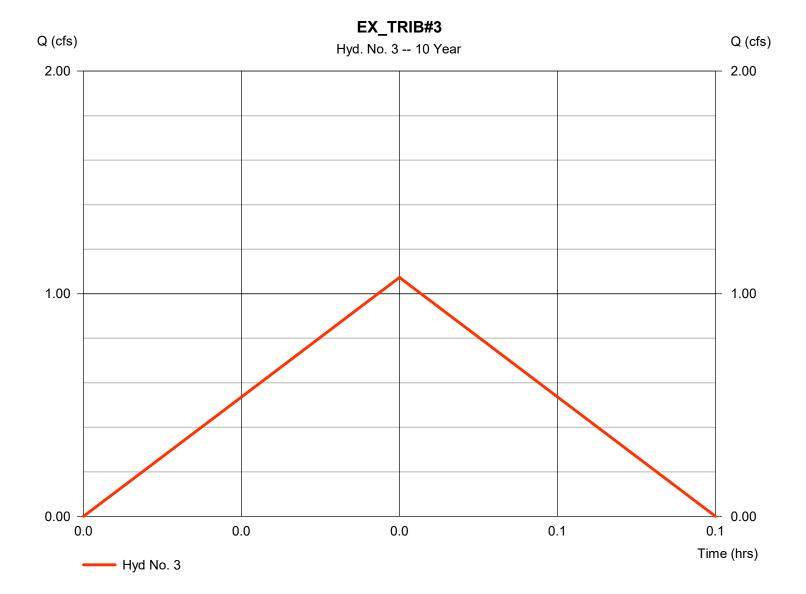

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

Hydrograph type = Rational Peak discharge = 1.633 cfsStorm frequency = 10 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 196 cuft Drainage area Runoff coeff. = 0.2= 0.910 ac= 8.971 in/hrTc by User $= 2.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

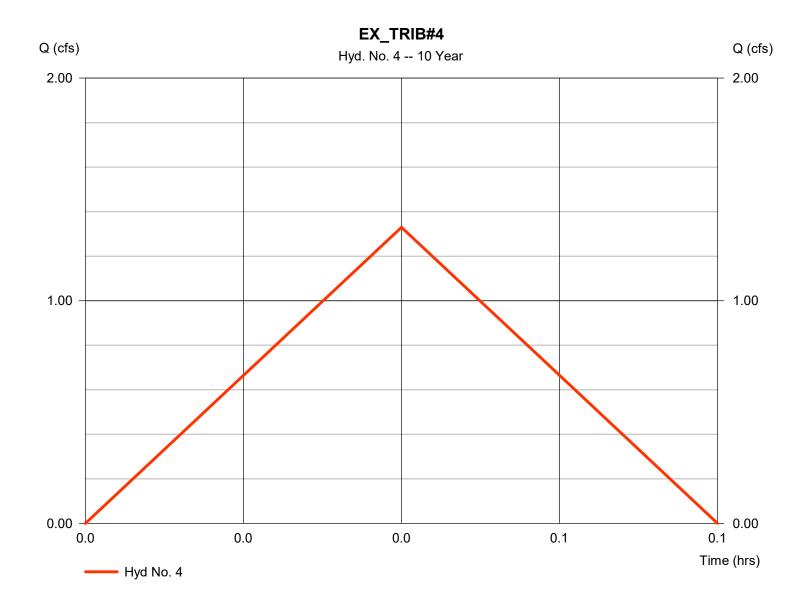

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

Hydrograph type = Rational Peak discharge = 1.073 cfsStorm frequency = 10 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 129 cuft Drainage area Runoff coeff. = 0.598= 0.200 acIntensity = 8.971 in/hr Tc by User $= 2.00 \, \text{min}$ IDF Curve = SampleFHA.idf Asc/Rec limb fact = 1/1

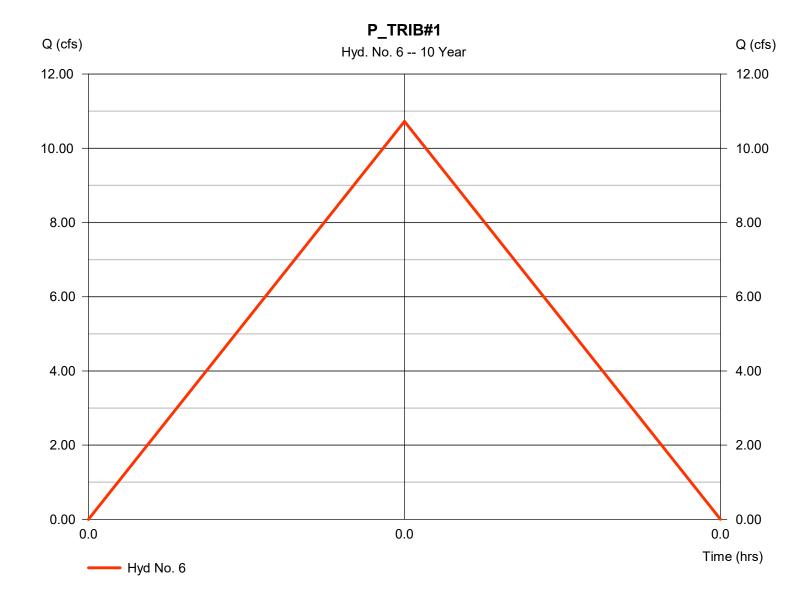

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX_TRIB#4

= 1.329 cfsHydrograph type = Rational Peak discharge Storm frequency = 10 yrsTime to peak $= 0.03 \, hrs$ = 160 cuft Time interval = 1 min Hyd. volume Drainage area Runoff coeff. = 0.26= 0.570 acIntensity = 8.971 in/hr Tc by User $= 2.00 \, \text{min}$ IDF Curve Asc/Rec limb fact = 1/1 = SampleFHA.idf

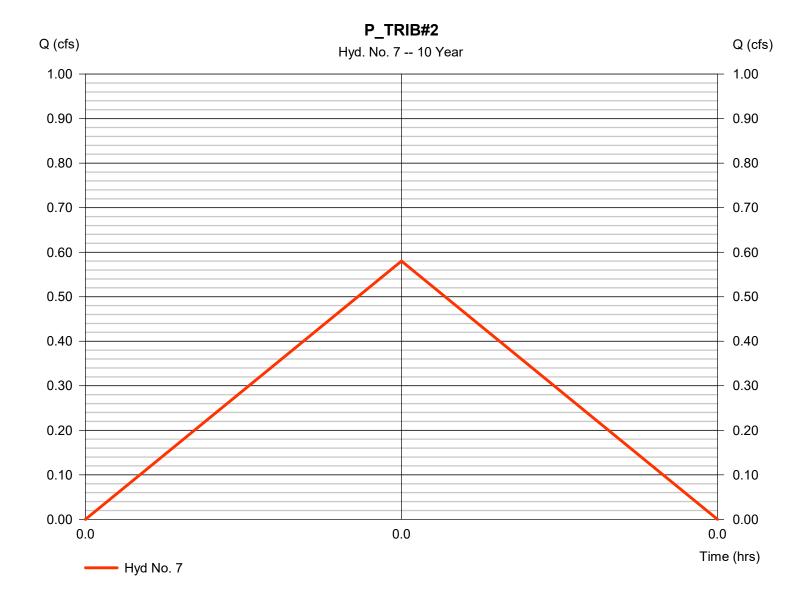

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

Hydrograph type = Rational Peak discharge = 10.73 cfsStorm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 644 cuft Drainage area Runoff coeff. = 1.630 ac= 0.691= 9.522 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

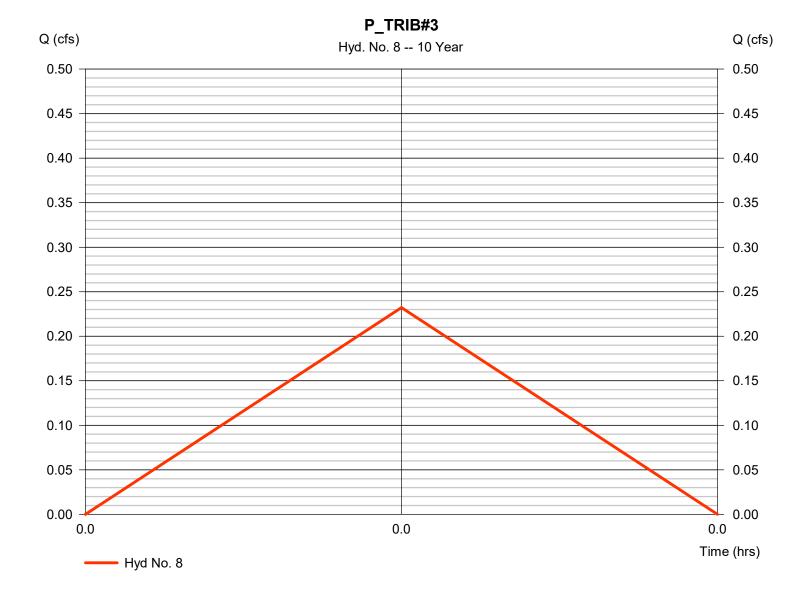

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type Peak discharge = 0.580 cfs= Rational Storm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 35 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 9.522 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity **IDF** Curve Asc/Rec limb fact = 1/1= SampleFHA.idf


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

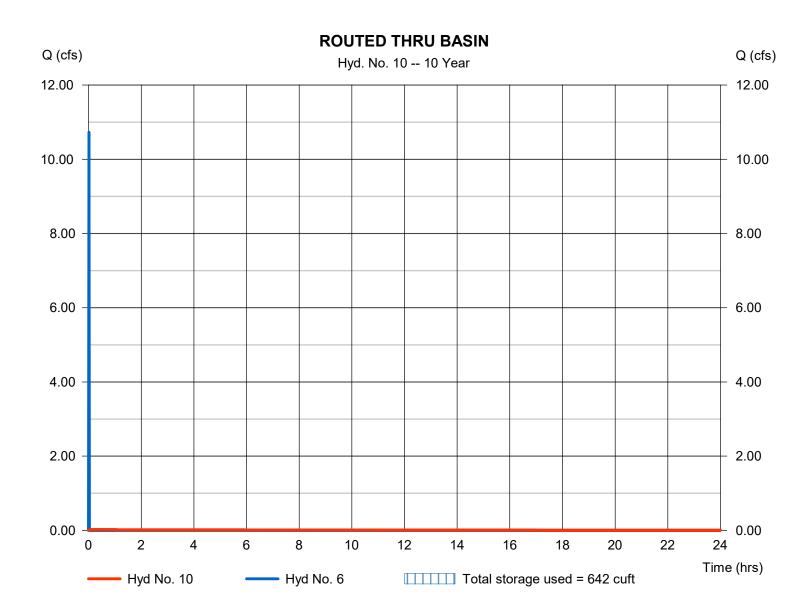
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

Hydrograph type Peak discharge = 0.232 cfs= Rational Storm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 14 cuft Drainage area Runoff coeff. = 0.271= 0.090 ac= 9.522 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1 = SampleFHA.idf

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

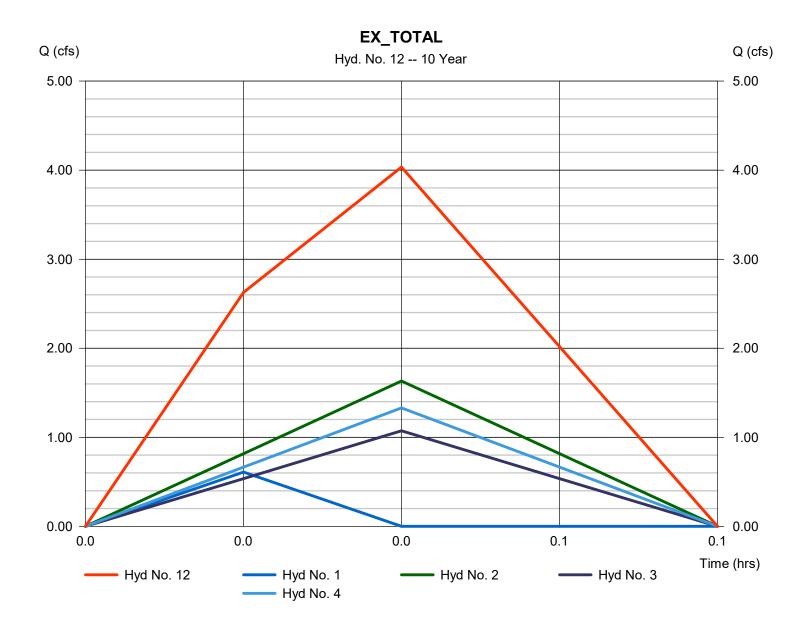

Wednesday, 03 / 8 / 2023

Hyd. No. 10

ROUTED THRU BASIN

= 0.017 cfsHydrograph type Peak discharge = Reservoir Storm frequency = 10 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 621 cuft Inflow hyd. No. Max. Elevation = 6 - P_TRIB#1 = 575.45 ftReservoir name = DETENTION POND Max. Storage = 642 cuft

Storage Indication method used.

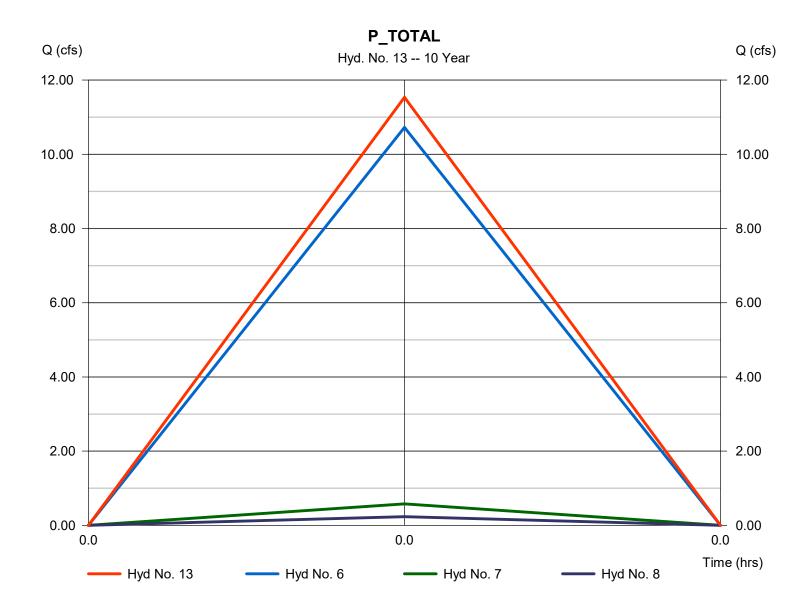

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX TOTAL

Hydrograph type = Combine Peak discharge = 4.035 cfsStorm frequency = 10 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 521 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 2.000 ac

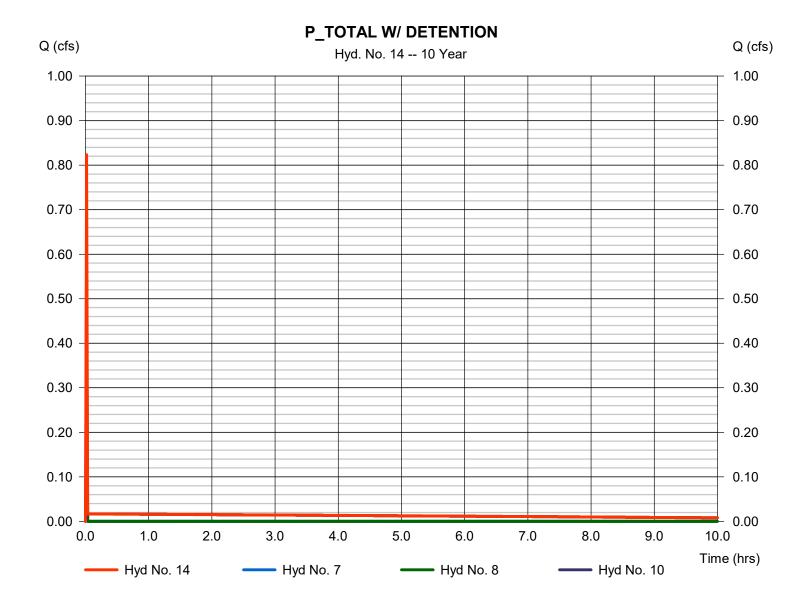

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P TOTAL

Hydrograph type = Combine Peak discharge = 11.54 cfsStorm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 692 cuft Inflow hyds. Contrib. drain. area = 2.010 ac= 6, 7, 8


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

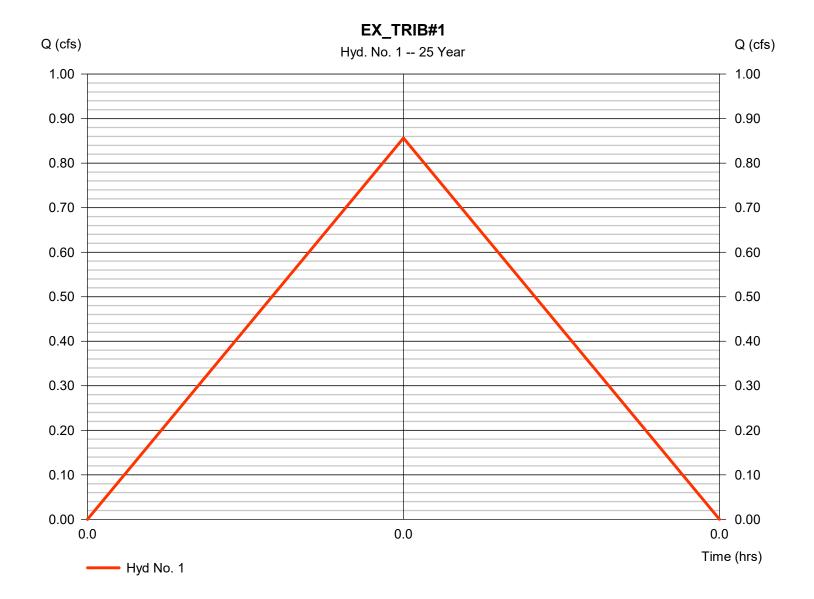
P TOTAL W/ DETENTION

Hydrograph type = Combine Peak discharge = 0.823 cfsStorm frequency = 10 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 670 cuft Contrib. drain. area Inflow hyds. = 7, 8, 10= 0.380 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	Rational	0.856	1	1	51				EX_TRIB#1	
2	Rational	2.129	1	2	256				EX_TRIB#2	
3	Rational	1.399	1	2	168				EX_TRIB#3	
4	Rational	1.734	1	2	208				EX_TRIB#4	
6	Rational	15.07	1	1	904				P_TRIB#1	
7	Rational	0.815	1	1	49				P_TRIB#2	
8	Rational	0.326	1	1	20				P_TRIB#3	
10	Reservoir	0.020	1	2	882	6	575.63	903	ROUTED THRU BASIN	
12	Combine	5.262	1	2	683	1, 2, 3,			EX_TOTAL	
13	Combine	16.21	1	1	973	4, 6, 7, 8,			P_TOTAL	
14	Combine	1.155	1	1	950	7, 8, 10,			P_TOTAL W/ DETENTION	
M22-8498_DETENTION_2023-01-24.gpw					Return I	Return Period: 25 Year			Wednesday, 03 / 8 / 2023	

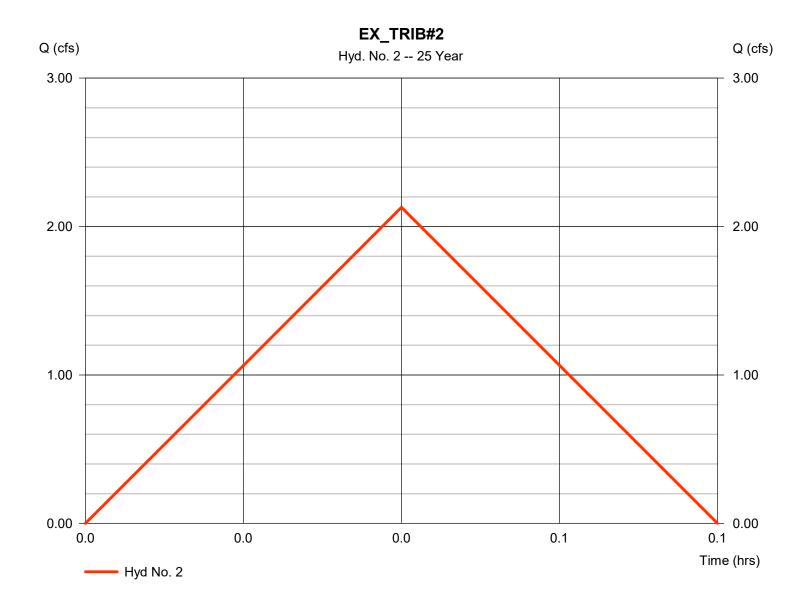

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

= 0.856 cfsHydrograph type = Rational Peak discharge Storm frequency = 25 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 51 cuft Drainage area Runoff coeff. = 0.2= 0.320 ac= 13.381 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity **IDF** Curve = SampleFHA.idf Asc/Rec limb fact = 1/1

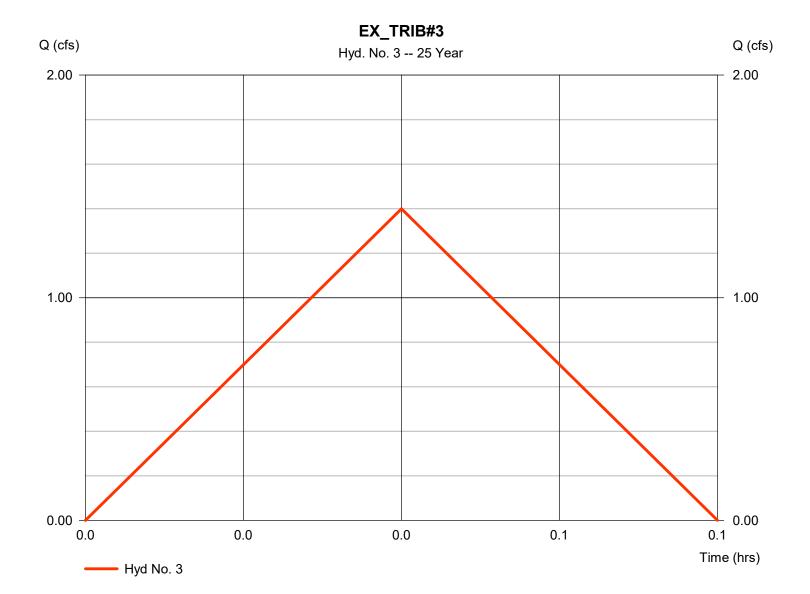

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

= 2.129 cfsHydrograph type = Rational Peak discharge Storm frequency = 25 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 256 cuft Drainage area Runoff coeff. = 0.2= 0.910 acIntensity = 11.699 in/hr Tc by User = 2.00 min Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

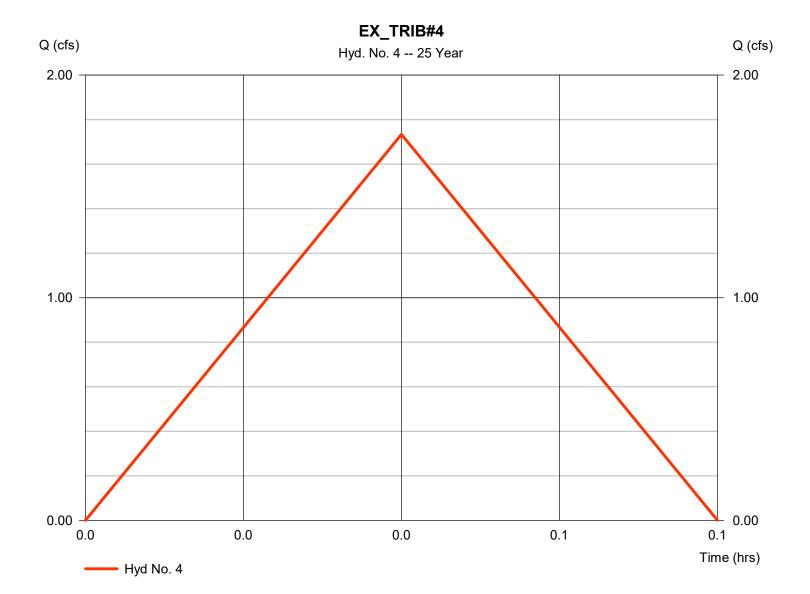

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

Hydrograph type = Rational Peak discharge = 1.399 cfsStorm frequency = 25 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 168 cuft Drainage area Runoff coeff. = 0.598= 0.200 ac= 11.699 in/hr Tc by User $= 2.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

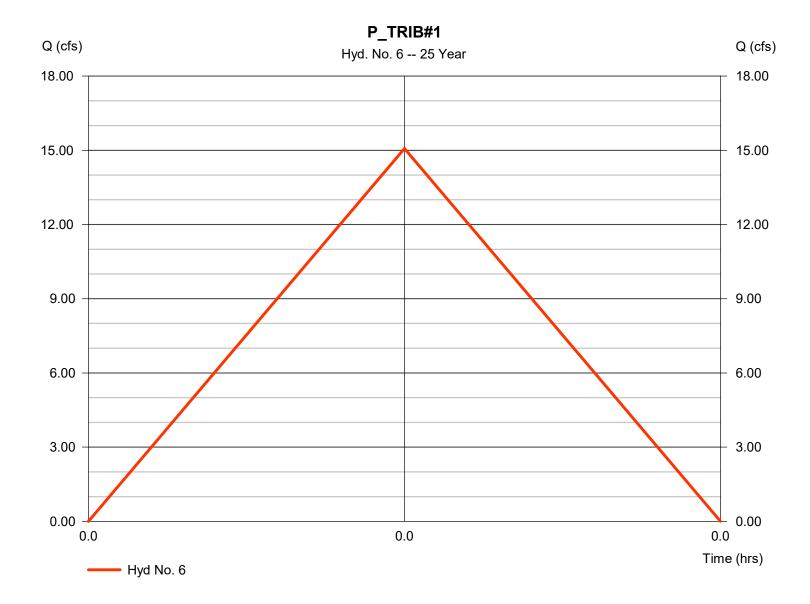

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX_TRIB#4

= 1.734 cfsHydrograph type = Rational Peak discharge Storm frequency = 25 yrsTime to peak = 0.03 hrs= 208 cuft Time interval = 1 min Hyd. volume Drainage area Runoff coeff. = 0.26= 0.570 ac= 11.699 in/hr Tc by User $= 2.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1 = SampleFHA.idf

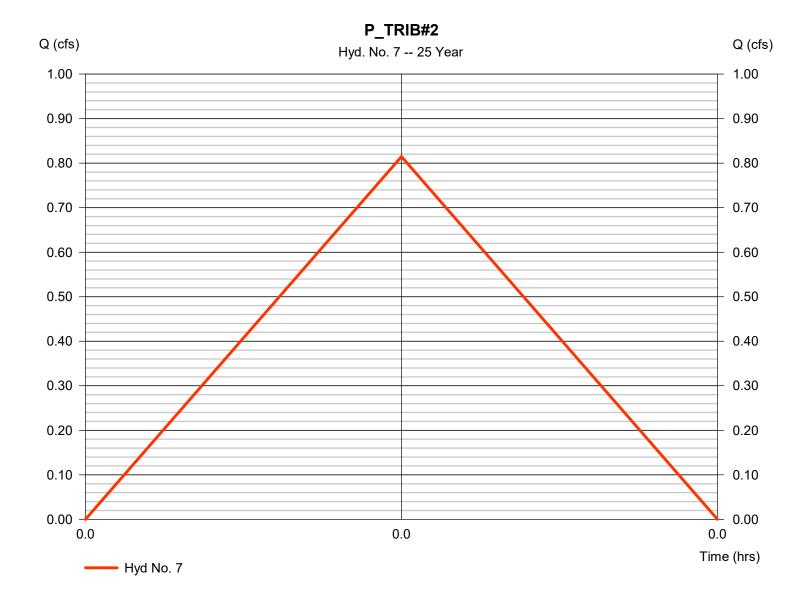

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

Hydrograph type = Rational Peak discharge = 15.07 cfsStorm frequency = 25 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 904 cuft Drainage area Runoff coeff. = 1.630 ac= 0.691= 13.381 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

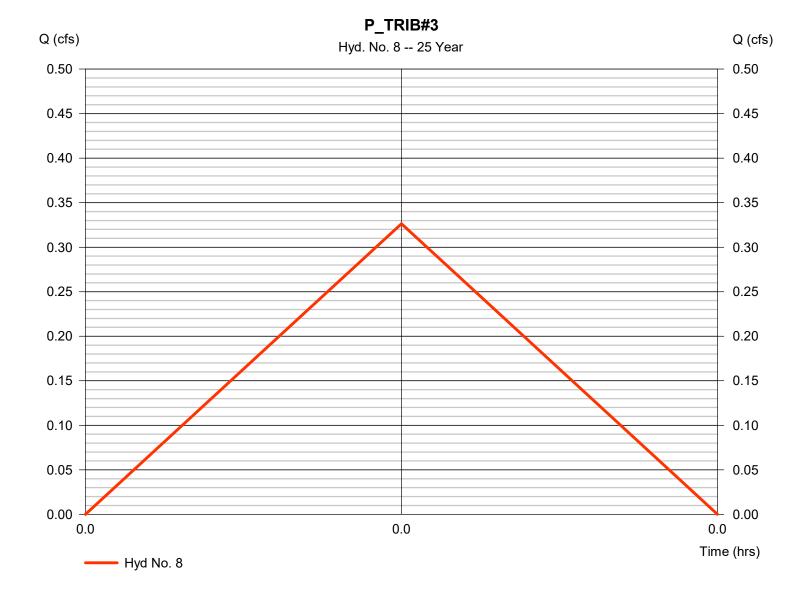

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type = Rational Peak discharge = 0.815 cfsStorm frequency = 25 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 49 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 13.381 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity **IDF** Curve Asc/Rec limb fact = 1/1= SampleFHA.idf


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

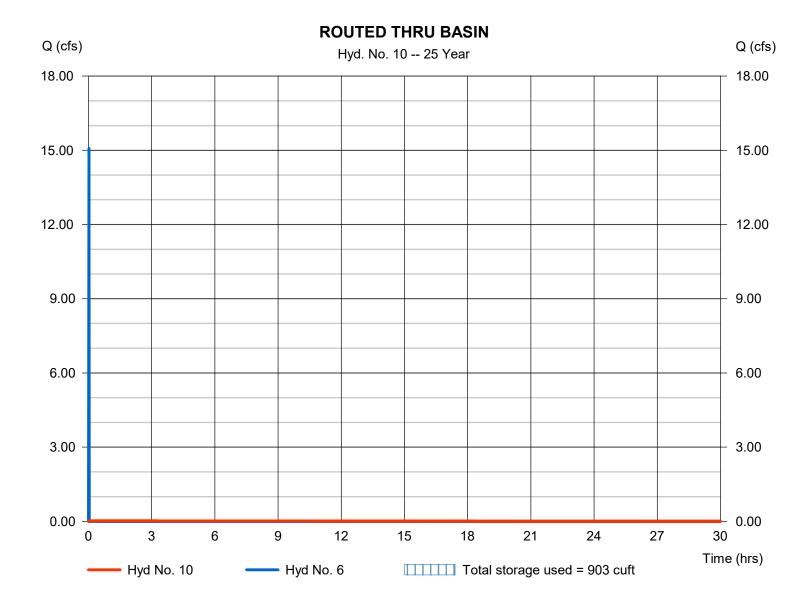
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

Hydrograph type = Rational Peak discharge = 0.326 cfsStorm frequency = 25 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 20 cuft Drainage area Runoff coeff. = 0.271= 0.090 acIntensity = 13.381 in/hr Tc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 03 / 8 / 2023

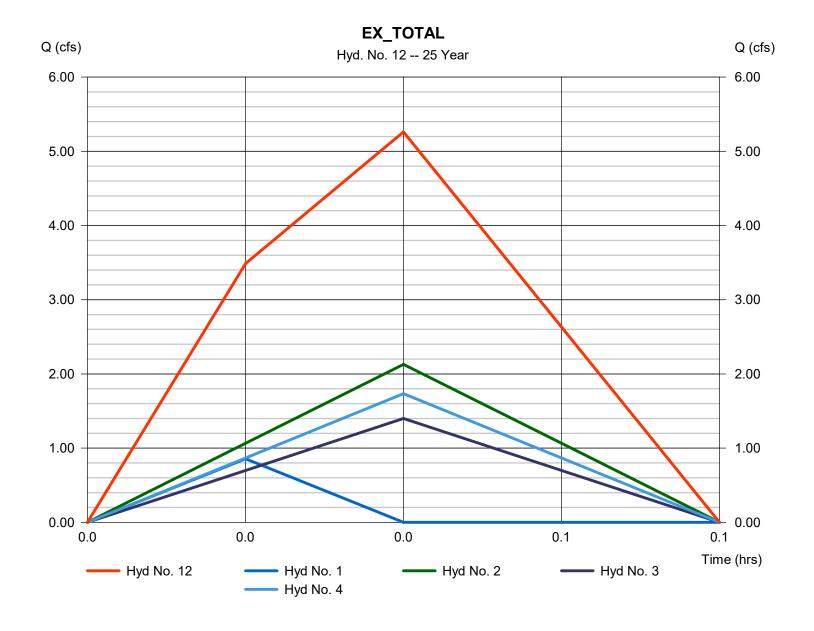
Hyd. No. 10

ROUTED THRU BASIN

Hydrograph type Peak discharge = 0.020 cfs= Reservoir Storm frequency = 25 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 882 cuft Inflow hyd. No. Max. Elevation = 6 - P_TRIB#1 = 575.63 ftReservoir name = DETENTION POND Max. Storage = 903 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

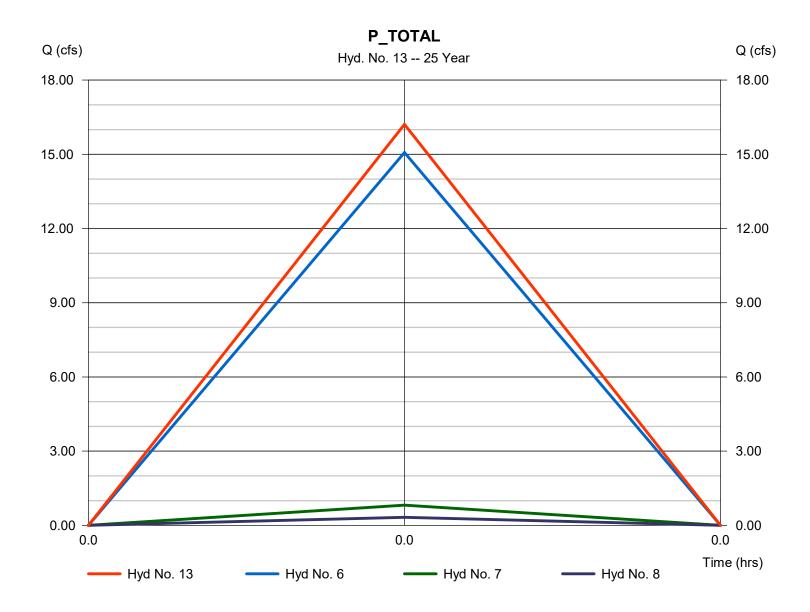

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX_TOTAL

Hydrograph type = Combine
Storm frequency = 25 yrs
Time interval = 1 min
Inflow hyds. = 1, 2, 3, 4

Peak discharge = 5.262 cfs
Time to peak = 0.03 hrs
Hyd. volume = 683 cuft
Contrib. drain. area = 2.000 ac

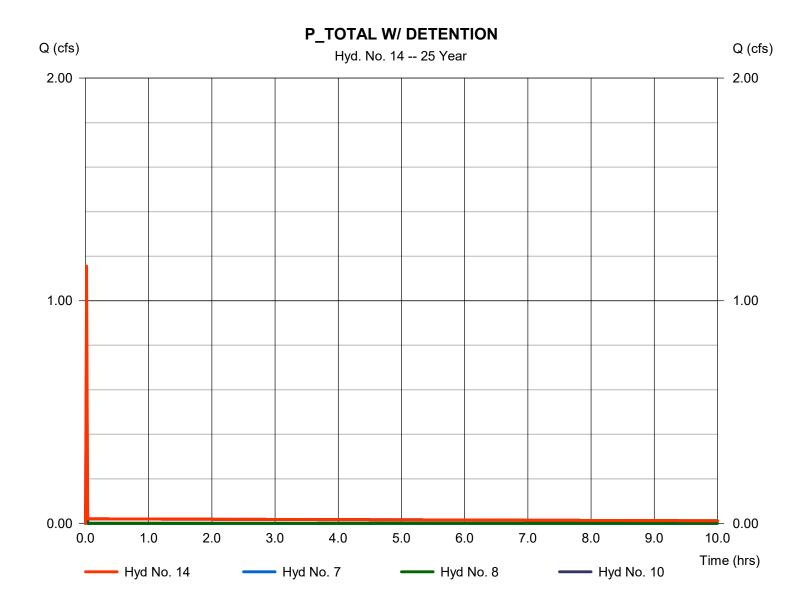

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P_TOTAL

Hydrograph type = Combine Peak discharge = 16.21 cfsStorm frequency = 25 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 973 cuft Inflow hyds. = 6, 7, 8 Contrib. drain. area = 2.010 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

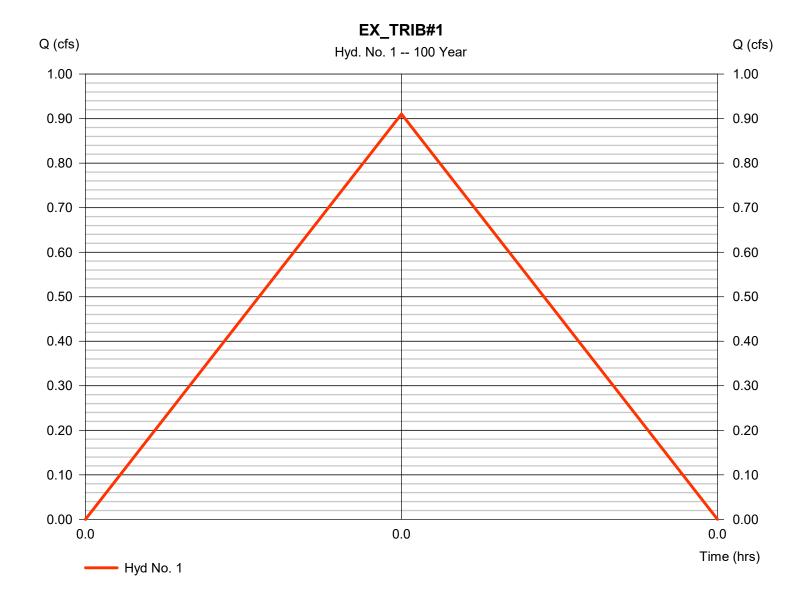
P TOTAL W/ DETENTION

= 1.155 cfsHydrograph type = Combine Peak discharge Storm frequency Time to peak = 25 yrs= 0.02 hrsTime interval = 1 min Hyd. volume = 950 cuft Inflow hyds. = 7, 8, 10 Contrib. drain. area = 0.380 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

	- nyuranow nyurograpris Extensi						- Exteriolori for 7te	ension for Autodesk® Civil 3D® by Autodesk, Inc. v2021		
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	Rational	0.910	1	1	55				EX_TRIB#1	
2	Rational	2.402	1	2	288				EX_TRIB#2	
3	Rational	1.578	1	2	189				EX_TRIB#3	
4	Rational	1.956	1	2	235				EX_TRIB#4	
6	Rational	16.02	1	1	961				P_TRIB#1	
7	Rational	0.866	1	1	52				P_TRIB#2	
8	Rational	0.347	1	1	21				P_TRIB#3	
10	Reservoir	0.021	1	2	939	6	575.67	960	ROUTED THRU BASIN	
12	Combine	5.936	1	2	767	1, 2, 3,			EX_TOTAL	
13	Combine	17.23	1	1	1,034	4, 6, 7, 8,			P_TOTAL	
14	Combine	1.227	1	1	1,012	7, 8, 10,			P_TOTAL W/ DETENTION	
M2:	M22-8498_DETENTION_2023-01-24.gpw					Return Period: 100 Year			Wednesday, 03 / 8 / 2023	

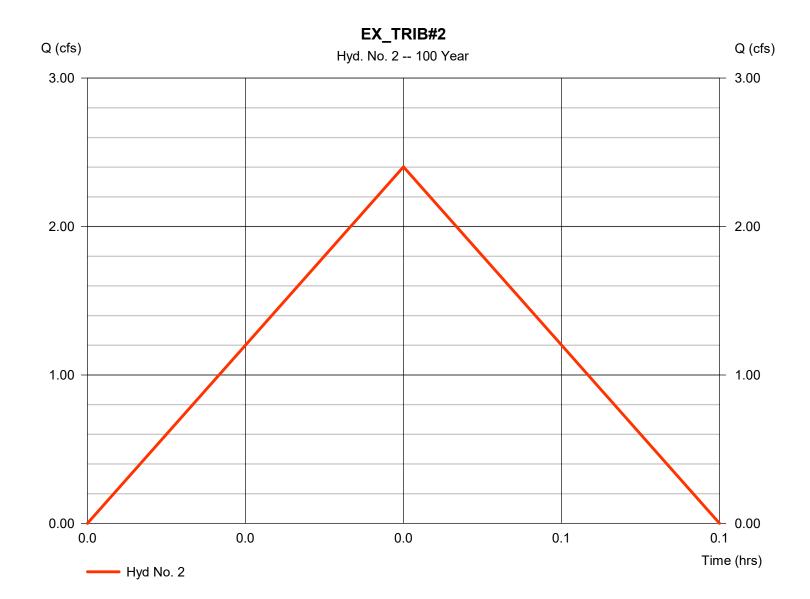

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

= 0.910 cfsHydrograph type Peak discharge = Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 55 cuft Drainage area Runoff coeff. = 0.320 ac= 0.2= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity **IDF** Curve Asc/Rec limb fact = 1/1= SampleFHA.idf

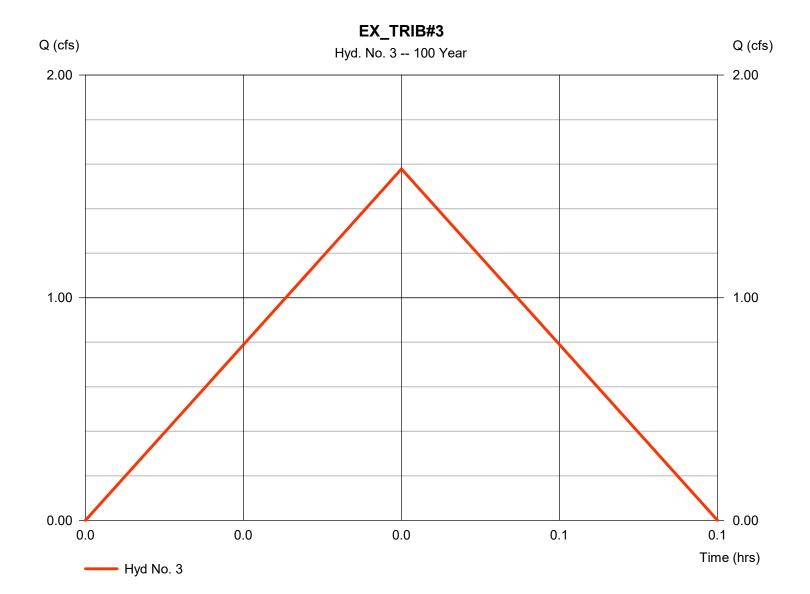

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

Hydrograph type = Rational Peak discharge = 2.402 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 288 cuft Drainage area Runoff coeff. = 0.910 ac= 0.2= 13.198 in/hr Tc by User = 2.00 min Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

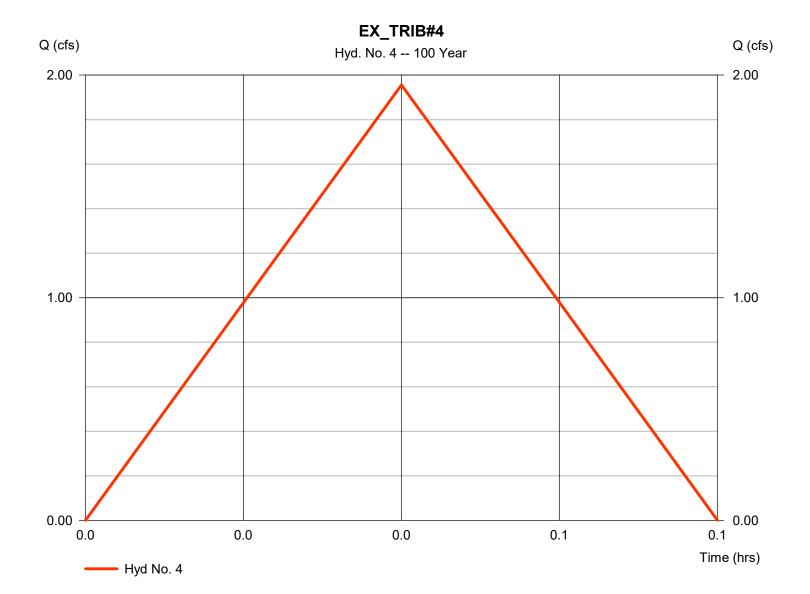

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

Hydrograph type = Rational Peak discharge = 1.578 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 189 cuft Drainage area Runoff coeff. = 0.598= 0.200 ac= 13.198 in/hr Tc by User $= 2.00 \, \text{min}$ Intensity IDF Curve Asc/Rec limb fact = 1/1 = SampleFHA.idf

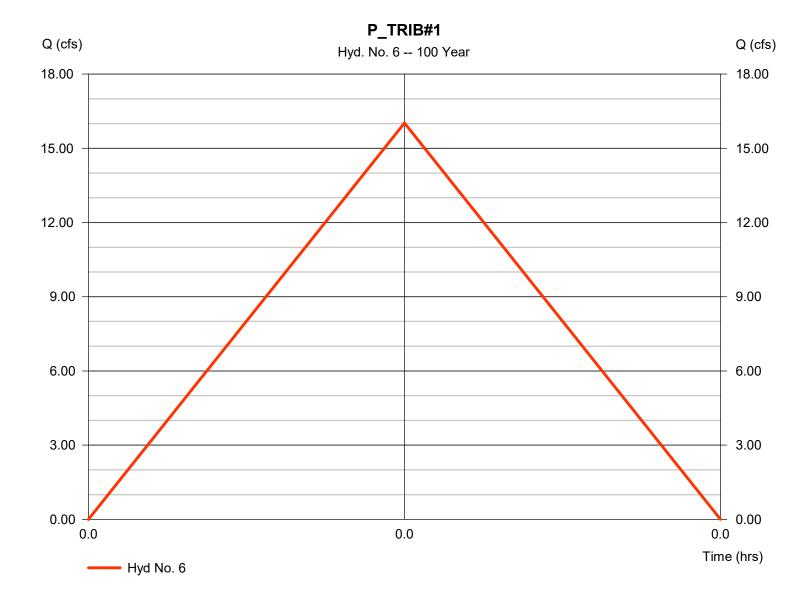

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX_TRIB#4

Hydrograph type = Rational Peak discharge = 1.956 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 235 cuft Drainage area Runoff coeff. = 0.26= 0.570 ac= 13.198 in/hr Tc by User $= 2.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1 = SampleFHA.idf

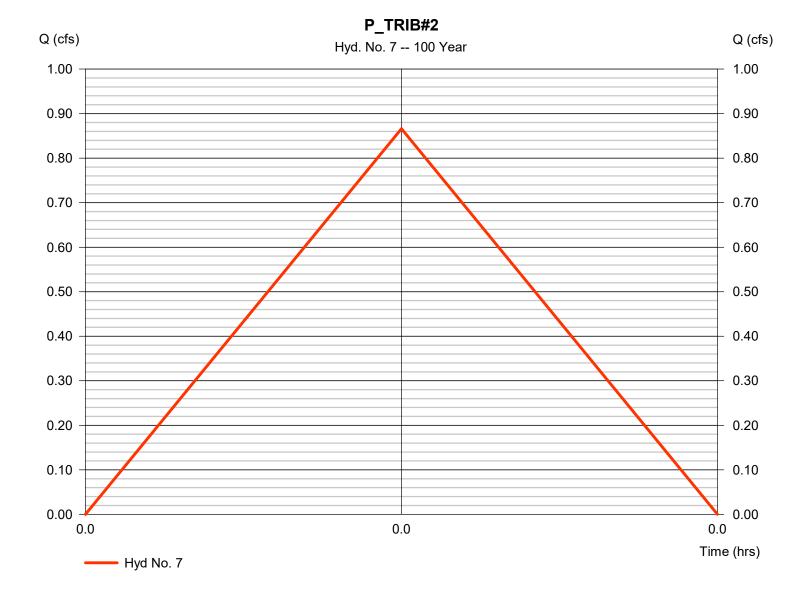

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

= Rational Hydrograph type Peak discharge = 16.02 cfsStorm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 961 cuft Drainage area Runoff coeff. = 1.630 ac= 0.691= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

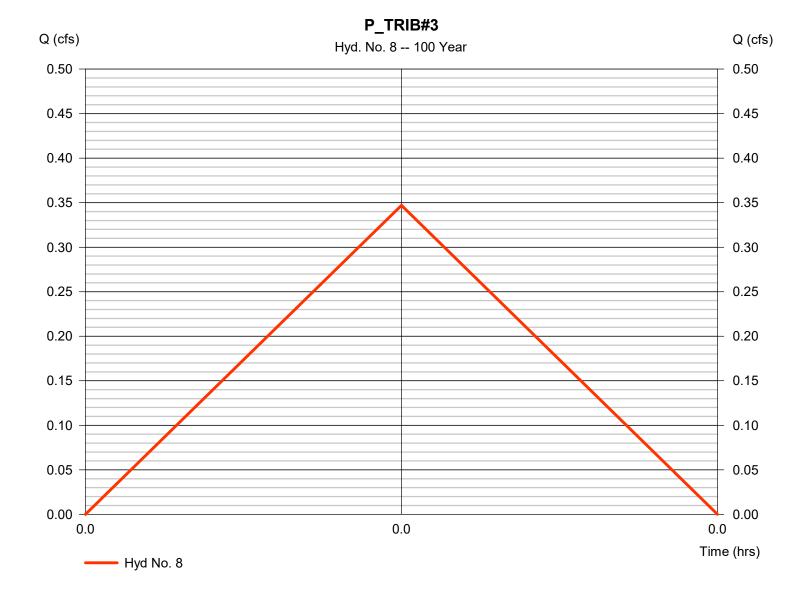

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type Peak discharge = 0.866 cfs= Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 52 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity **IDF** Curve Asc/Rec limb fact = 1/1= SampleFHA.idf


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

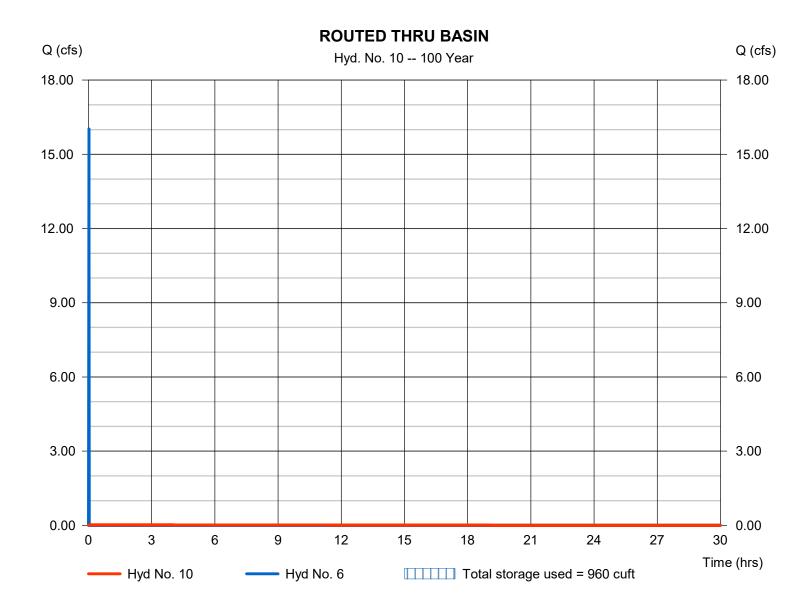
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

Hydrograph type Peak discharge = 0.347 cfs= Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 21 cuft Drainage area Runoff coeff. = 0.271= 0.090 ac= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

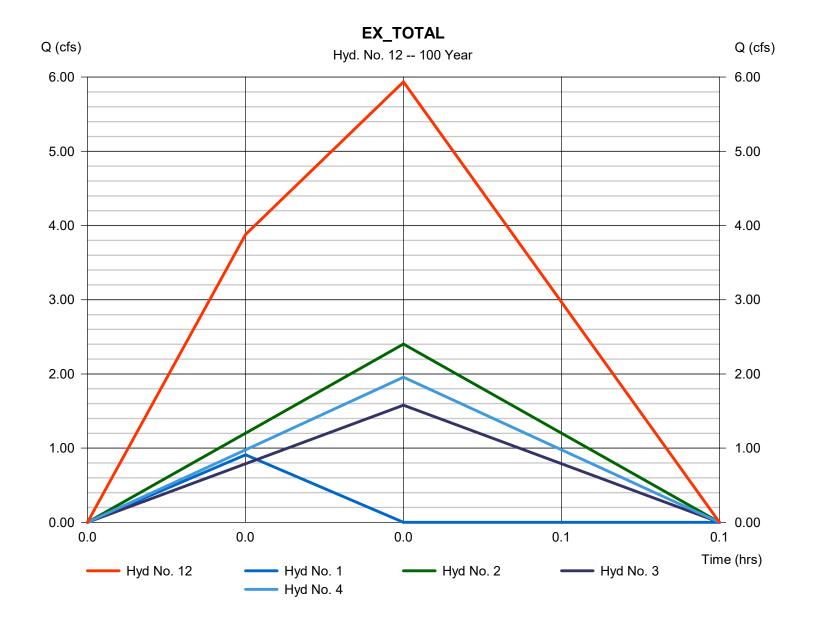

Wednesday, 03 / 8 / 2023

Hyd. No. 10

ROUTED THRU BASIN

Hydrograph type Peak discharge = 0.021 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 939 cuft Inflow hyd. No. Max. Elevation = 6 - P_TRIB#1 = 575.67 ftReservoir name = DETENTION POND Max. Storage = 960 cuft

Storage Indication method used.

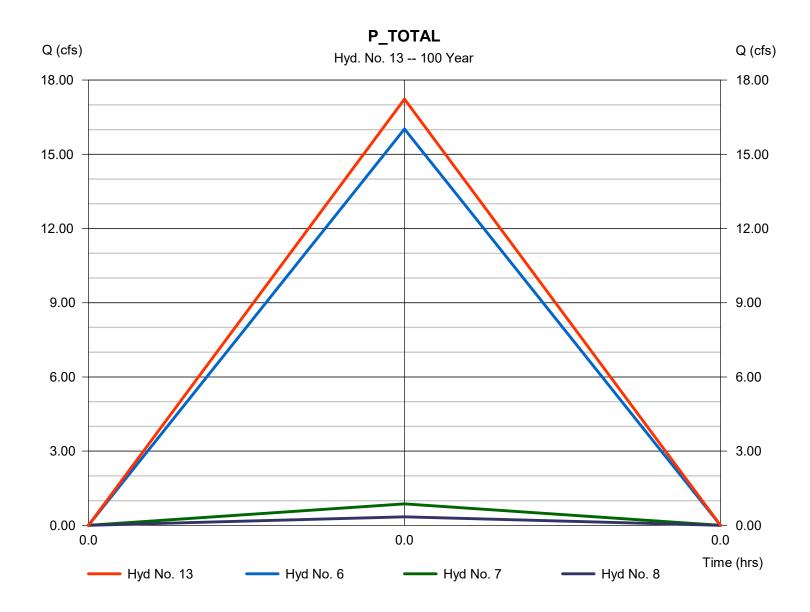

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX TOTAL

Hydrograph type = Combine Storm frequency = 100 yrs Time interval = 1 min Inflow hyds. = 1, 2, 3, 4 Peak discharge = 5.936 cfs
Time to peak = 0.03 hrs
Hyd. volume = 767 cuft
Contrib. drain. area = 2.000 ac

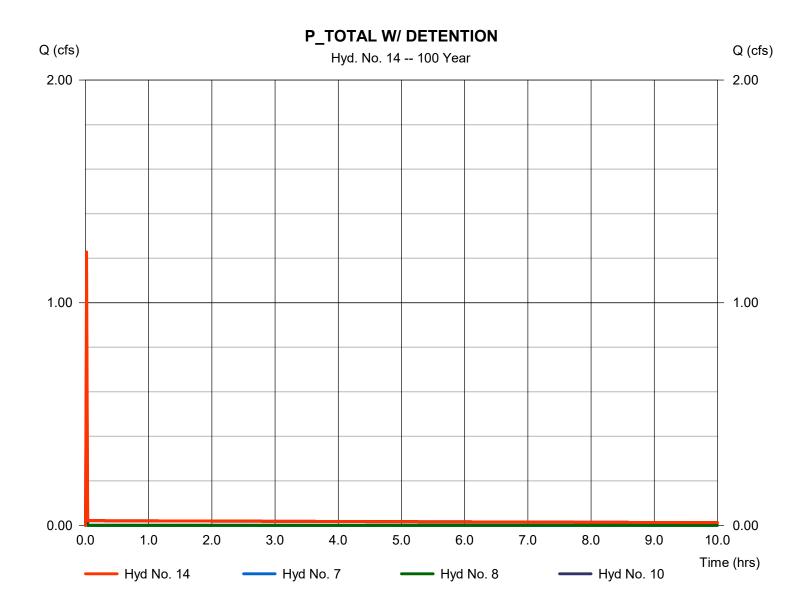

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P_TOTAL

Hydrograph type = Combine Peak discharge = 17.23 cfsStorm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 1,034 cuft Inflow hyds. = 6, 7, 8 Contrib. drain. area = 2.010 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

P TOTAL W/ DETENTION

= 1.227 cfsHydrograph type = Combine Peak discharge Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 1,012 cuftInflow hyds. = 7, 8, 10 Contrib. drain. area = 0.380 ac

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	38.4810	7.5000	0.7610	
3	29.0800	2.9500	0.6030	
5	0.0000	0.0000	0.0000	
10	78.3870	12.2000	0.8170	
25	30.8270	3.0000	0.6020	
50	0.0000	0.0000	0.0000	
100	76.6220	8.5000	0.7480	

File name: SampleFHA.idf

Intensity = $B / (Tc + D)^E$

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.63	4.36	3.60	3.09	2.72	2.44	2.22	2.04	1.89	1.76	1.65	1.56
3	8.33	6.21	5.10	4.40	3.90	3.53	3.25	3.01	2.82	2.66	2.51	2.39
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.67	6.23	5.27	4.60	4.08	3.68	3.36	3.10	2.87	2.68	2.52	2.38
25	8.82	6.58	5.41	4.67	4.15	3.76	3.45	3.20	3.00	2.82	2.68	2.55
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	10.94	8.64	7.22	6.25	5.54	4.99	4.56	4.20	3.90	3.65	3.43	3.25

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

		Rainfall Precipitation Table (in)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
SCS 24-hour	0.00	2.20	0.00	3.30	4.25	5.77	6.80	7.95					
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00					
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00					
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10					

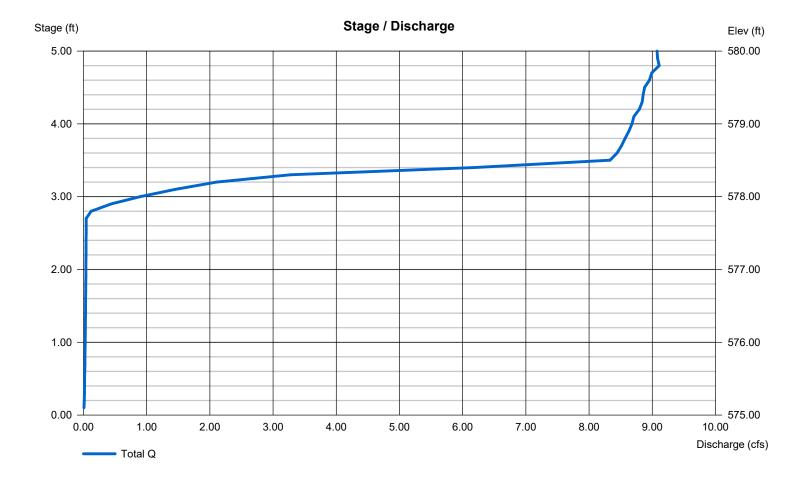
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Pond No. 1 - DETENTION POND

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 575.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	575.00	700	0	0
1.00	576.00	2,303	1,424	1,424
2.00	577.00	3,500	2,880	4,304
3.00	578.00	4,720	4,094	8,399
4.00	579.00	5,863	5,281	13,680
5.00	580.00	7,106	6,474	20,153

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 12.00 1.00 6.00 0.00 = 16.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) 1.00 Span (in) = 12.00 24.00 0.00 Crest El. (ft) = 578.25 0.00 0.00 0.00 No. Barrels = 1 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 572.50 575.00 577.75 0.00 Weir Type = Rect Length (ft) = 91.00 0.00 0.00 0.00 Multi-Stage = Yes No No No Slope (%) = 3.000.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage = n/a Yes Yes No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

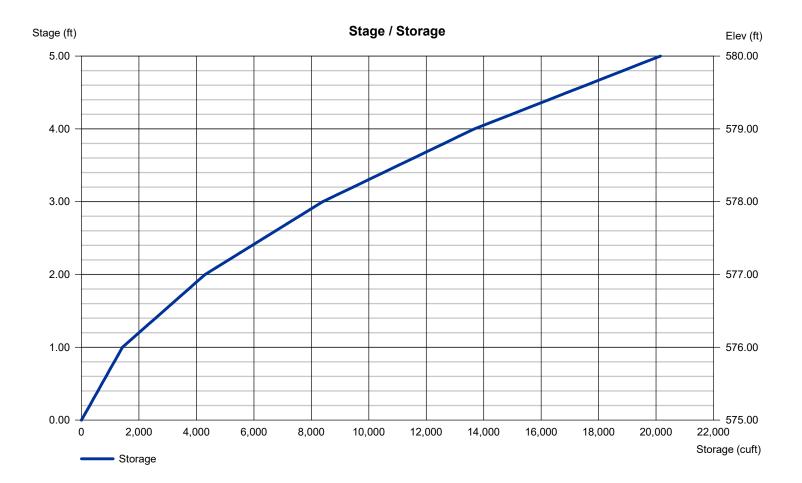
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Pond No. 1 - DETENTION POND

Pond Data


Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 575.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	575.00	700	0	0
1.00	576.00	2,303	1,424	1,424
2.00	577.00	3,500	2,880	4,304
3.00	578.00	4,720	4,094	8,399
4.00	579.00	5,863	5,281	13,680
5.00	580.00	7,106	6,474	20,153

Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 12.00 1.00 6.00 0.00 = 16.00 0.00 0.00 0.00 Rise (in) Crest Len (ft) Span (in) = 12.00 1.00 24.00 0.00 Crest El. (ft) = 578.25 0.00 0.00 0.00 No. Barrels = 1 0 Weir Coeff. = 3.333.33 3.33 3.33 Invert El. (ft) = 572.50 575.00 577.75 0.00 Weir Type = Rect Length (ft) = 91.00 0.00 0.00 0.00 Multi-Stage = Yes No No No Slope (%) = 3.000.00 0.00 n/a N-Value = .013 .013 .013 n/a = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Orifice Coeff. Multi-Stage = n/a Yes Yes No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Hydrograph Return Period Recap

	Hydrograph	Inflow					Hydrograph				
0.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	Rational									0.910	EX_TRIB#1
2	Rational									2.402	EX_TRIB#2
3	Rational									1.578	EX_TRIB#3
4	Rational									1.956	EX_TRIB#4
6	Rational									16.02	P_TRIB#1
7	Rational									0.866	P_TRIB#2
8	Rational									0.347	P_TRIB#3
10	Reservoir	6								2.185	ROUTED THRU BASIN
12	Combine	1, 2, 3, 4,								5.936	EX_TOTAL
13	Combine	6, 7, 8,								17.23	P_TOTAL
14	Combine	7, 8, 10,								2.185	P_TOTAL W/ DETENTION

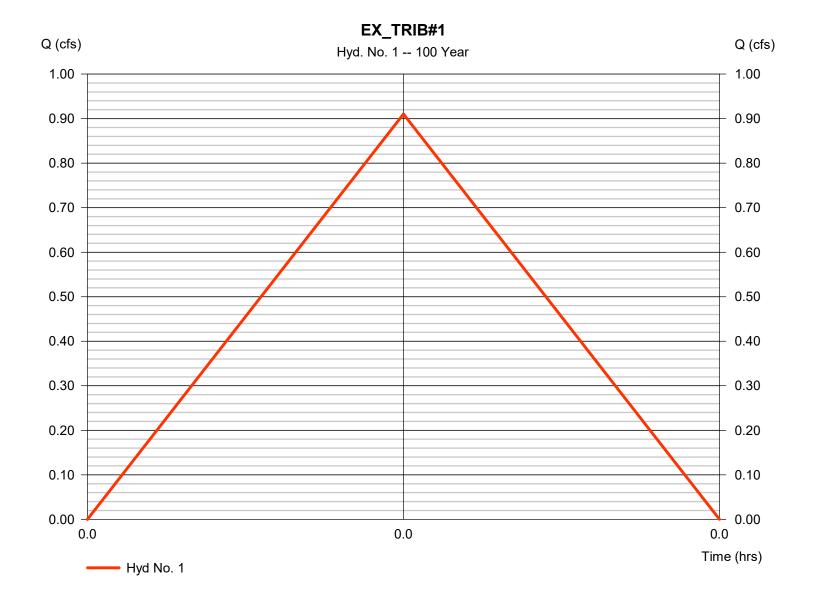
Proj. file: M22-8498_DETENTION_LFB_2023-01-24.gpw

Wednesday, 03 / 8 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	Rational	0.910	1	1	55				EX_TRIB#1
2	Rational	2.402	1	2	288				EX_TRIB#2
3	Rational	1.578	1	2	189				EX_TRIB#3
4	Rational	1.956	1	2	235				EX_TRIB#4
6	Rational	16.02	1	1	961				P_TRIB#1
7	Rational	0.866	1	1	52				P_TRIB#2
8	Rational	0.347	1	1	21				P_TRIB#3
10	Reservoir	2.185	1	2	960	6	578.36	10,319	ROUTED THRU BASIN
12	Combine	5.936	1	2	767	1, 2, 3,			EX_TOTAL
13	Combine	17.23	1	1	1,034	6, 7, 8,			P_TOTAL
14	Combine	2.185	1	2	1,033	7, 8, 10,			P_TOTAL W/ DETENTION
	2-8498_DETE	INTION	LEB 202	22.04.24		Pariadi 100	V	Made	ay, 03 / 8 / 2023

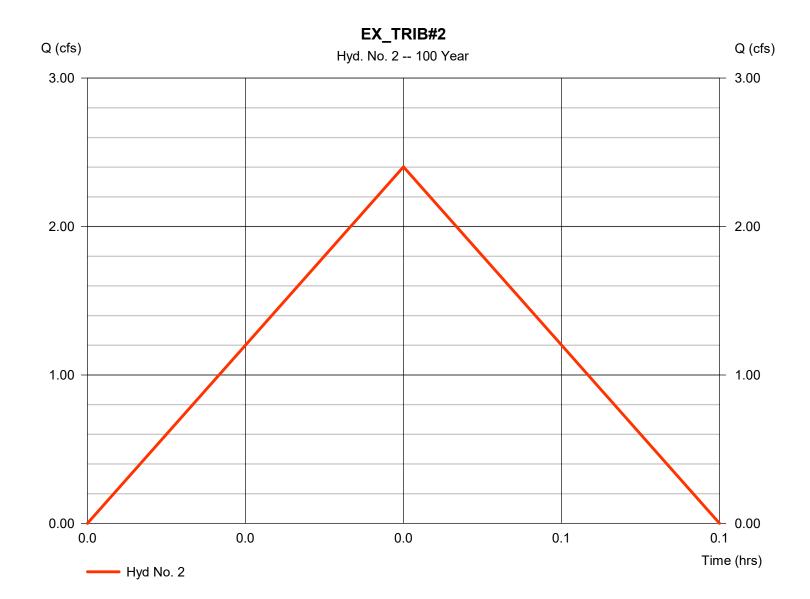

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 1

EX_TRIB#1

= 0.910 cfsHydrograph type Peak discharge = Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 55 cuft Drainage area Runoff coeff. = 0.320 ac= 0.2= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

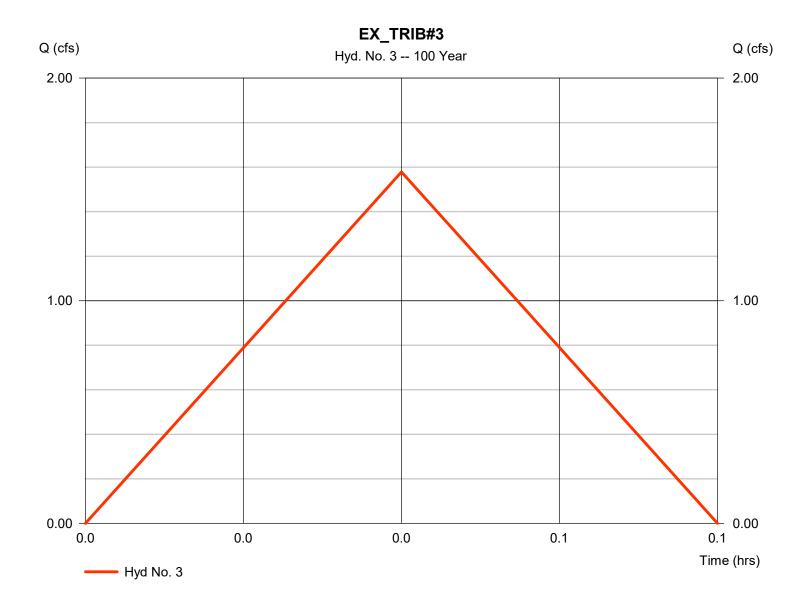

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 2

EX_TRIB#2

Hydrograph type = Rational Peak discharge = 2.402 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 288 cuft Drainage area Runoff coeff. = 0.910 ac= 0.2= 13.198 in/hr Tc by User = 2.00 min Intensity Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

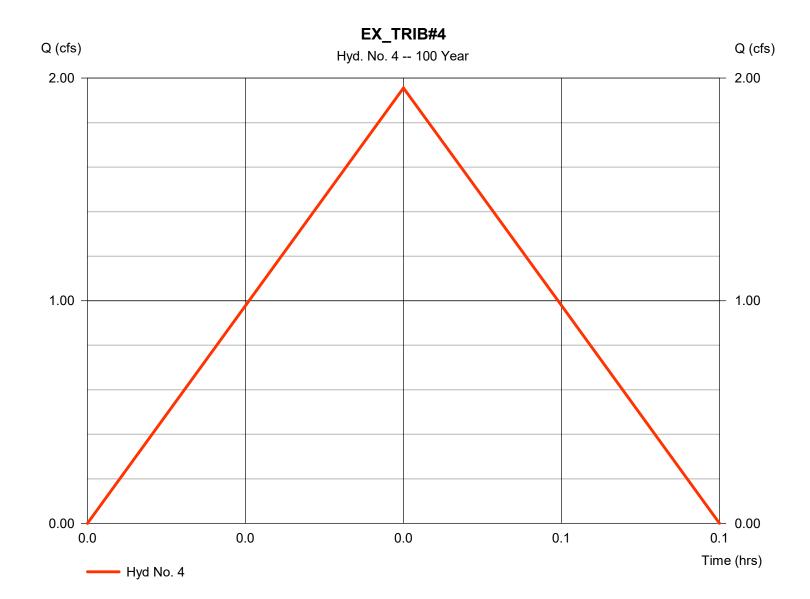

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 3

EX_TRIB#3

Hydrograph type = Rational Peak discharge = 1.578 cfsStorm frequency = 100 yrsTime to peak $= 0.03 \, hrs$ Time interval = 1 min Hyd. volume = 189 cuft Drainage area Runoff coeff. = 0.598= 0.200 acIntensity = 13.198 in/hr Tc by User $= 2.00 \, \text{min}$ IDF Curve Asc/Rec limb fact = SampleFHA.idf = 1/1

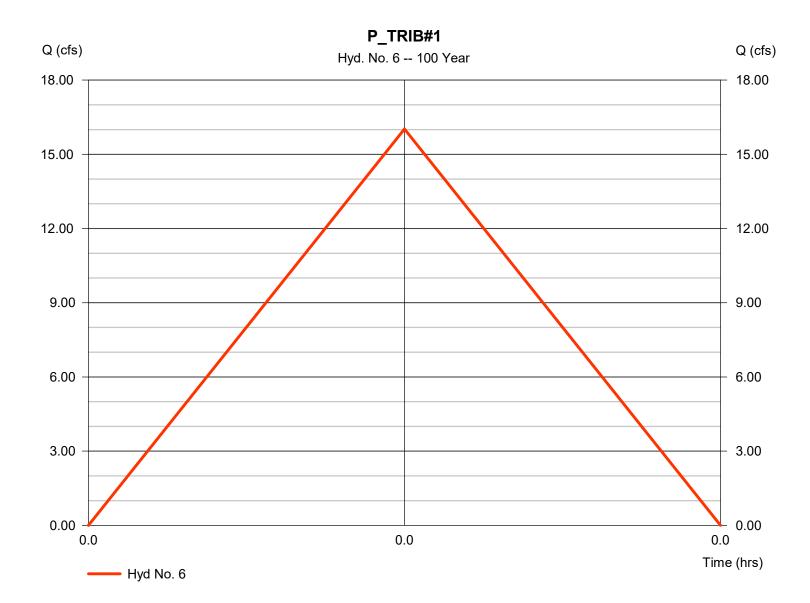

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 4

EX TRIB#4

Hydrograph type = Rational Peak discharge = 1.956 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 235 cuft Drainage area Runoff coeff. = 0.26= 0.570 acIntensity = 13.198 in/hr Tc by User $= 2.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = 1/1 = SampleFHA.idf

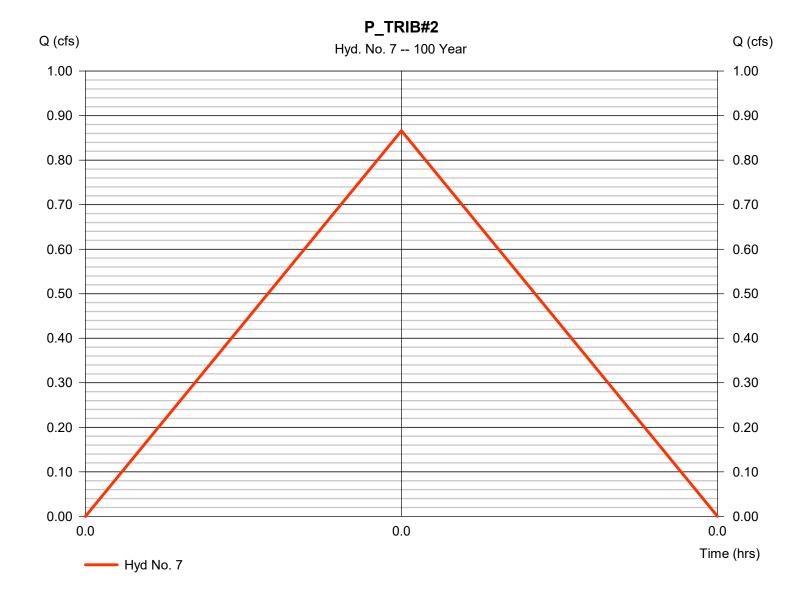

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 6

P_TRIB#1

= Rational Hydrograph type Peak discharge = 16.02 cfsStorm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 961 cuft Drainage area Runoff coeff. = 1.630 ac= 0.691Intensity = 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Asc/Rec limb fact **IDF** Curve = SampleFHA.idf = 1/1

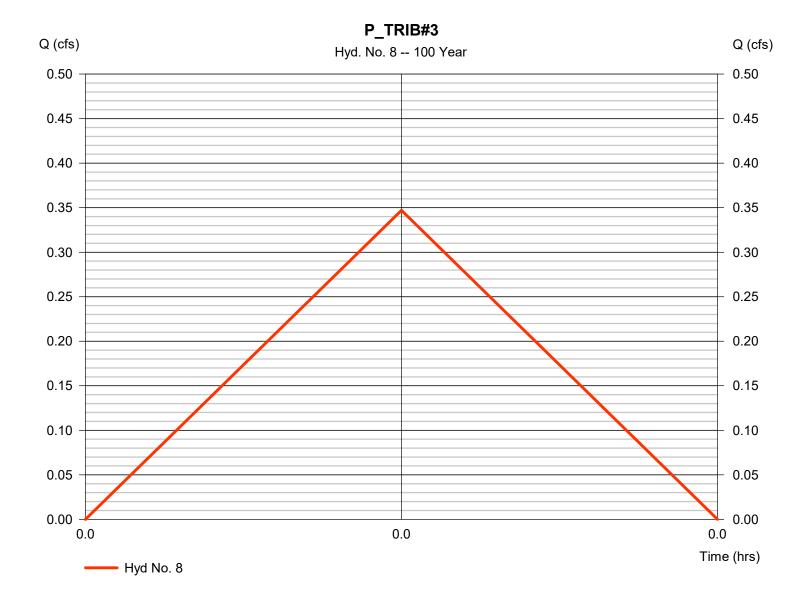

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 7

P_TRIB#2

Hydrograph type Peak discharge = 0.866 cfs= Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 52 cuft Drainage area Runoff coeff. = 0.290 ac= 0.21= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

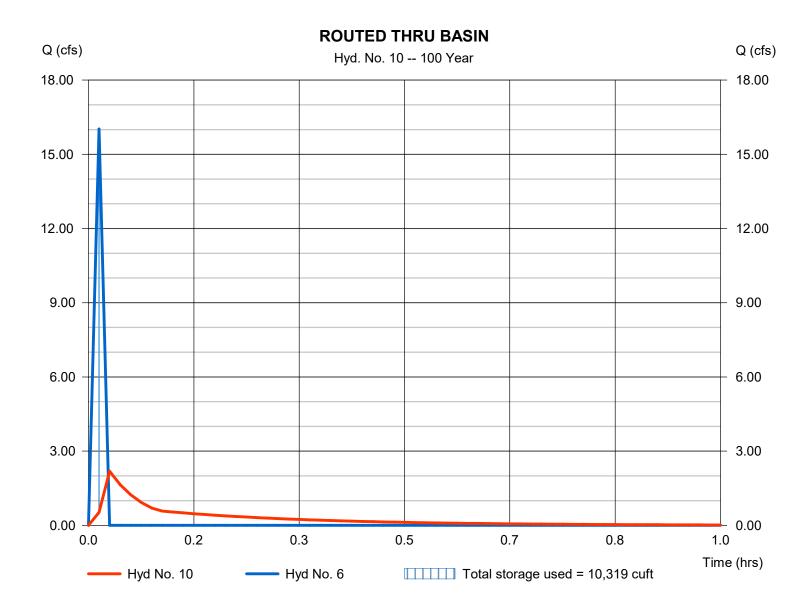
Wednesday, 03 / 8 / 2023

Hyd. No. 8

P_TRIB#3

Hydrograph type Peak discharge = 0.347 cfs= Rational Storm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 21 cuft Drainage area Runoff coeff. = 0.271= 0.090 ac= 14.224 in/hr Tc by User $= 1.00 \, \text{min}$ Intensity Asc/Rec limb fact **IDF** Curve = 1/1= SampleFHA.idf

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 03 / 8 / 2023

Hyd. No. 10

ROUTED THRU BASIN

Hydrograph type Peak discharge = 2.185 cfs= Reservoir Storm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 960 cuft Max. Elevation Inflow hyd. No. = 6 - P_TRIB#1 = 578.36 ft= DETENTION POND Max. Storage = 10,319 cuftReservoir name

Storage Indication method used. Wet pond routing start elevation = 578.20 ft.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Pond No. 1 - DETENTION POND

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 575.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	575.00	700	0	0
1.00	576.00	2,303	1,424	1,424
2.00	577.00	3,500	2,880	4,304
3.00	578.00	4,720	4,094	8,399
4.00	579.00	5,863	5,281	13,680
5.00	580.00	7,106	6,474	20,153

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	Inactive	Inactive	0.00	Crest Len (ft)	= 16.00	0.00	0.00	0.00
Span (in)	= 12.00	1.00	24.00	0.00	Crest El. (ft)	= 578.25	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 572.50	575.00	577.75	0.00	Weir Type	= Rect			
Length (ft)	= 91.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 3.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage / Storage / Discharge Table

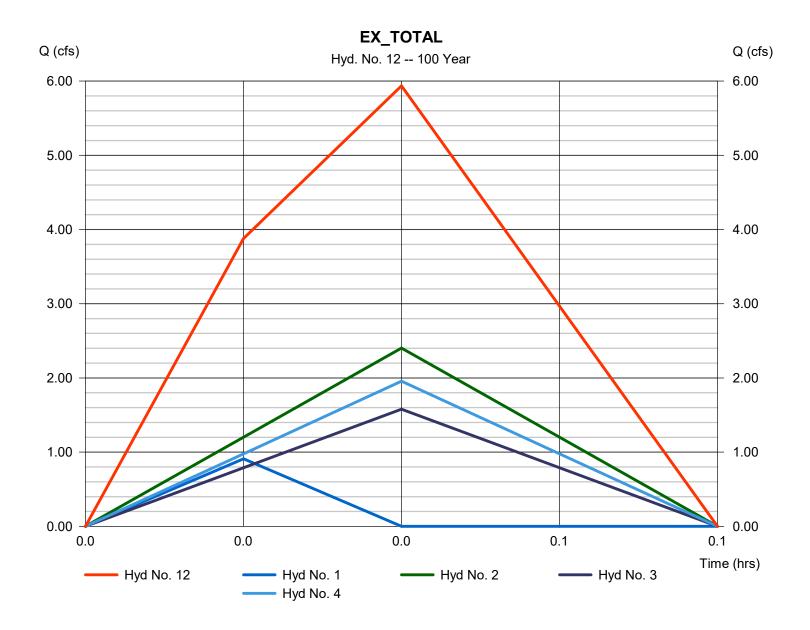
Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	575.00	0.00	0.00	0.00		0.00						0.000
0.10	142	575.10	5.35 ic	0.00	0.00		0.00						0.000
0.20	285	575.20	5.35 ic	0.00	0.00		0.00						0.000
0.30	427	575.30	5.35 ic	0.00	0.00		0.00						0.000
0.40	570	575.40	5.35 ic	0.00	0.00		0.00						0.000
0.50	712	575.50	5.35 ic	0.00	0.00		0.00						0.000
0.60	854	575.60	5.35 ic	0.00	0.00		0.00						0.000
0.70	997	575.70	5.35 ic	0.00	0.00		0.00						0.000
0.80	1,139	575.80	5.35 ic	0.00	0.00		0.00						0.000
0.90	1,282	575.90	5.35 ic	0.00	0.00		0.00						0.000
1.00	1,424	576.00	5.35 ic	0.00	0.00		0.00						0.000
1.10	1,712	576.10	5.35 ic	0.00	0.00		0.00						0.000
1.20	2,000	576.20	5.35 ic	0.00	0.00		0.00						0.000
1.30	2,288	576.30	5.35 ic	0.00	0.00		0.00						0.000
1.40	2,576	576.40	5.35 ic	0.00	0.00		0.00						0.000
1.50	2,864	576.50	5.35 ic	0.00	0.00		0.00						0.000
1.60	3,152	576.60	5.35 ic	0.00	0.00		0.00						0.000
1.70	3,440	576.70	5.35 ic	0.00	0.00		0.00						0.000
1.80	3,728	576.80	5.35 ic	0.00	0.00		0.00						0.000
1.90	4,016	576.90	5.35 ic	0.00	0.00		0.00						0.000
2.00	4,304	577.00	5.35 ic	0.00	0.00		0.00						0.000
2.10	4,714	577.10	5.35 ic	0.00	0.00		0.00						0.000
2.20	5,123	577.20	5.35 ic	0.00	0.00		0.00						0.000
2.30	5,533	577.30	5.35 ic	0.00	0.00		0.00						0.000
2.40	5,942	577.40	5.35 ic	0.00	0.00		0.00						0.000
2.50	6,352	577.50	5.35 ic	0.00	0.00		0.00						0.000
2.60	6,761	577.60	5.35 ic	0.00	0.00		0.00						0.000
2.70	7,171	577.70	5.35 ic	0.00	0.00		0.00						0.000
2.80	7,580	577.80	5.35 ic	0.00	0.00		0.00						0.000
2.90	7,989	577.90	5.35 ic	0.00	0.00		0.00						0.000
3.00	8,399	578.00	5.35 ic	0.00	0.00		0.00						0.000
3.10	8,927	578.10	5.35 ic	0.00	0.00		0.00						0.000
3.20	9,455	578.20	5.35 ic	0.00	0.00		0.00						0.000
3.30	9,983	578.30	5.35 ic	0.00	0.00		0.59						0.594
3.40	10,511	578.40	5.35 ic	0.00	0.00		3.09						3.092
3.50	11,039	578.50	6.66 ic	0.00	0.00		6.66						6.655
3.60	11,567	578.60	8.42 oc	0.00	0.00		8.41 s						8.413
	•										Continue	00 00 nov	t naga

Continues on next page...

DETENTION POND Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.70	12,095	578.70	8.51 oc	0.00	0.00		8.51 s						8.506
3.80	12,623	578.80	8.57 oc	0.00	0.00		8.57 s						8.567
3.90	13,152	578.90	8.63 oc	0.00	0.00		8.63 s						8.630
4.00	13,680	579.00	8.69 oc	0.00	0.00		8.68 s						8.681
4.10	14,327	579.10	8.75 oc	0.00	0.00		8.71 s						8.715
4.20	14,974	579.20	8.80 oc	0.00	0.00		8.78 s						8.776
4.30	15,622	579.30	8.85 oc	0.00	0.00		8.79 s						8.793
4.40	16,269	579.40	8.91 oc	0.00	0.00		8.85 s						8.851
4.50	16,917	579.50	8.96 oc	0.00	0.00		8.88 s						8.878
4.60	17,564	579.60	9.01 oc	0.00	0.00		8.94 s						8.942
4.70	18,211	579.70	9.06 oc	0.00	0.00		9.01 s						9.013
4.80	18,859	579.80	9.11 oc	0.00	0.00		9.05 s						9.049
4.90	19,506	579.90	9.16 oc	0.00	0.00		9.07 s						9.072
5.00	20,153	580.00	9.21 oc	0.00	0.00		9.05 s						9.050

...End

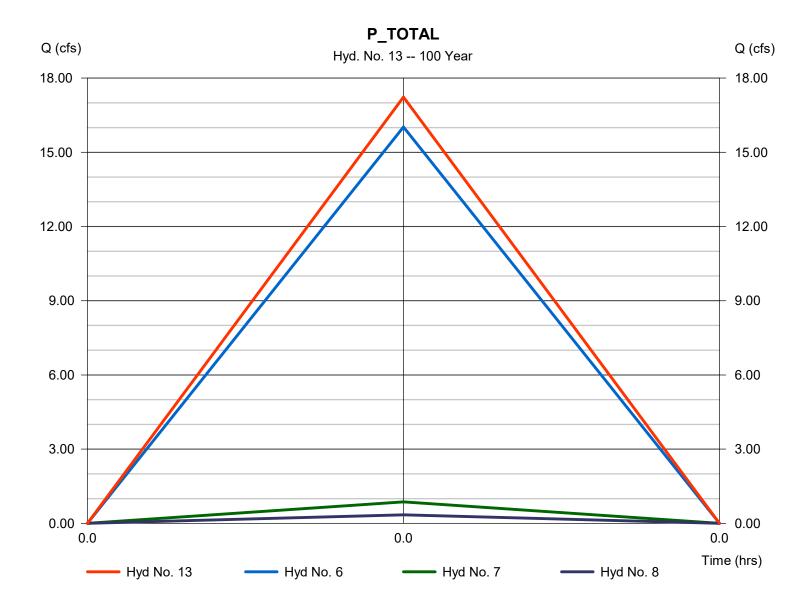

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 12

EX_TOTAL

Hydrograph type = Combine Peak discharge = 5.936 cfsStorm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 767 cuft Inflow hyds. = 1, 2, 3, 4Contrib. drain. area = 2.000 ac

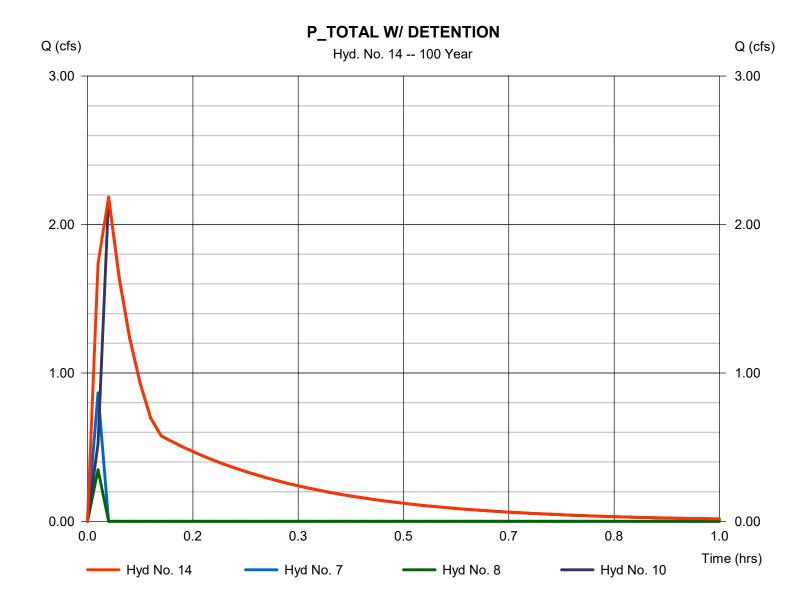

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 13

P TOTAL

Hydrograph type = Combine Peak discharge = 17.23 cfsStorm frequency = 100 yrsTime to peak = 0.02 hrsTime interval = 1 min Hyd. volume = 1,034 cuft Inflow hyds. = 6, 7, 8 Contrib. drain. area = 2.010 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Hyd. No. 14

P TOTAL W/ DETENTION

= 2.185 cfsHydrograph type = Combine Peak discharge Storm frequency = 100 yrsTime to peak = 0.03 hrsTime interval = 1 min Hyd. volume = 1,033 cuft Inflow hyds. = 7, 8, 10 = 0.380 acContrib. drain. area

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Return Period	Intensity-Du	ıration-Frequency E	quation Coefficients	(FHA)
(Yrs)	В	D	E	(N/A)
1	0.0000	0.0000	0.0000	
2	38.4810	7.5000	0.7610	
3	29.0800	2.9500	0.6030	
5	0.0000	0.0000	0.0000	
10	78.3870	12.2000	0.8170	
25	30.8270	3.0000	0.6020	
50	0.0000	0.0000	0.0000	
100	76.6220	8.5000	0.7480	

File name: SampleFHA.idf

Intensity = $B / (Tc + D)^E$

Return												
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	5.63	4.36	3.60	3.09	2.72	2.44	2.22	2.04	1.89	1.76	1.65	1.56
3	8.33	6.21	5.10	4.40	3.90	3.53	3.25	3.01	2.82	2.66	2.51	2.39
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	7.67	6.23	5.27	4.60	4.08	3.68	3.36	3.10	2.87	2.68	2.52	2.38
25	8.82	6.58	5.41	4.67	4.15	3.76	3.45	3.20	3.00	2.82	2.68	2.55
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	10.94	8.64	7.22	6.25	5.54	4.99	4.56	4.20	3.90	3.65	3.43	3.25

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

		Rainfall Precipitation Table (in)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
SCS 24-hour	0.00	2.20	0.00	3.30	4.25	5.77	6.80	7.95					
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00					
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00					
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10					

Hydrograph Return Period Recap

lyd. lo.	Hydrograph	Inflow	Peak Outflow (cfs)					Hydrograph			
).	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		4.146								P_WQ#1
;	Reservoir	1	0.141								ROUTED THRU BASIN

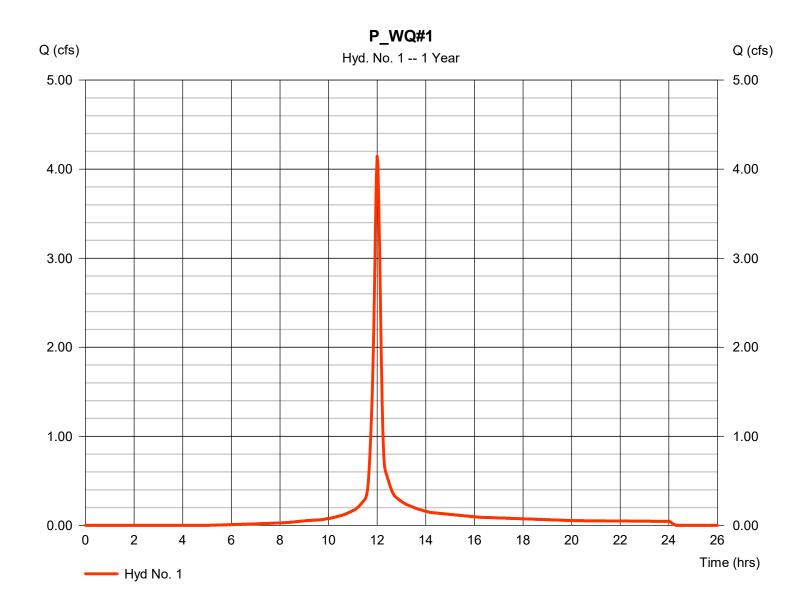
Proj. file: M22-8498_DETENTION_WQ_2023-01-24.gpw

Wednesday, 03 / 8 / 2023

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

d.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
	SCS Runoff	4.146	2	720	10,991				P_WQ#1
	Reservoir	0.141	2	860	10,912	1	577.81	7,608	ROUTED THRU BASIN
22	2-8498_DETE	ENTION_		23-01-24.g	pwReturn P	eriod: 1 Ye	ear	Wednesda	y, 03 / 8 / 2023


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

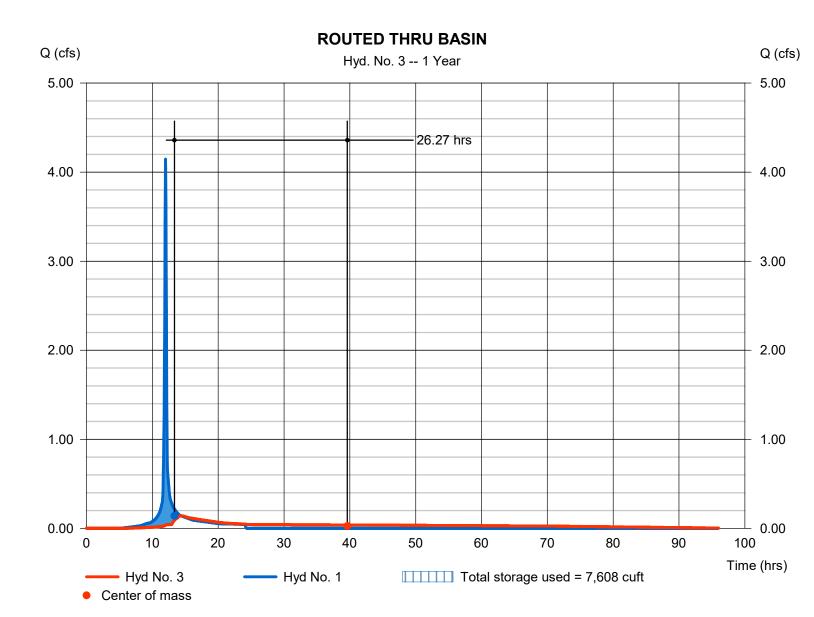
Wednesday, 03 / 8 / 2023

Hyd. No. 1

P_WQ#1

Hydrograph type = SCS Runoff Peak discharge = 4.146 cfsStorm frequency = 1 yrsTime to peak $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 10,991 cuftCurve number Drainage area = 1.650 ac= 93 = 0 ftBasin Slope = 0.0 % Hydraulic length Tc method Time of conc. (Tc) = 10.80 min = User Total precip. = 2.50 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021


Wednesday, 03 / 8 / 2023

Hyd. No. 3

ROUTED THRU BASIN

Hydrograph type Peak discharge = 0.141 cfs= Reservoir Storm frequency Time to peak $= 14.33 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 10,912 cuft Inflow hyd. No. = 1 - P WQ#1 Max. Elevation = 577.81 ft= DETENTION POND Max. Storage = 7,608 cuft Reservoir name

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Pond No. 1 - DETENTION POND

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 575.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	575.00	700	0	0
1.00	576.00	2,303	1,424	1,424
2.00	577.00	3,500	2,880	4,304
3.00	578.00	4,720	4,094	8,399
4.00	579.00	5,863	5,281	13,680
5.00	580.00	7,106	6,474	20,153

Culvert / Orifice Structures Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	1.00	6.00	0.00	Crest Len (ft)	= 16.00	0.00	0.00	0.00
Span (in)	= 12.00	1.00	24.00	0.00	Crest El. (ft)	= 578.25	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 572.50	575.00	577.75	0.00	Weir Type	= Rect			
Length (ft)	= 91.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 3.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	575.00	0.00	0.00	0.00		0.00						0.000
0.10	142	575.10	5.35 ic	0.01 ic	0.00		0.00						0.006
0.20	285	575.20	5.35 ic	0.01 ic	0.00		0.00						0.010
0.30	427	575.30	5.35 ic	0.01 ic	0.00		0.00						0.013
0.40	570	575.40	5.35 ic	0.02 ic	0.00		0.00						0.016
0.50	712	575.50	5.35 ic	0.02 ic	0.00		0.00						0.018
0.60	854	575.60	5.35 ic	0.02 ic	0.00		0.00						0.020
0.70	997	575.70	5.35 ic	0.02 ic	0.00		0.00						0.021
0.80	1,139	575.80	5.35 ic	0.02 ic	0.00		0.00						0.023
0.90	1,282	575.90	5.35 ic	0.02 ic	0.00		0.00						0.024
1.00	1,424	576.00	5.35 ic	0.03 ic	0.00		0.00						0.026
1.10	1,712	576.10	5.35 ic	0.03 ic	0.00		0.00						0.027
1.20	2,000	576.20	5.35 ic	0.03 ic	0.00		0.00						0.028
1.30	2,288	576.30	5.35 ic	0.03 ic	0.00		0.00						0.029
1.40	2,576	576.40	5.35 ic	0.03 ic	0.00		0.00						0.031
1.50	2,864	576.50	5.35 ic	0.03 ic	0.00		0.00						0.032
1.60	3,152	576.60	5.35 ic	0.03 ic	0.00		0.00						0.033
1.70	3,440	576.70	5.35 ic	0.03 ic	0.00		0.00						0.034
1.80	3,728	576.80	5.35 ic	0.03 ic	0.00		0.00						0.035
1.90	4,016	576.90	5.35 ic	0.04 ic	0.00		0.00						0.036
2.00	4,304	577.00	5.35 ic	0.04 ic	0.00		0.00						0.037
2.10	4,714	577.10	5.35 ic	0.04 ic	0.00		0.00						0.038
2.20	5,123	577.20	5.35 ic	0.04 ic	0.00		0.00						0.039
2.30	5,533	577.30	5.35 ic	0.04 ic	0.00		0.00						0.039
2.40	5,942	577.40	5.35 ic	0.04 ic	0.00		0.00						0.040
2.50	6,352	577.50	5.35 ic	0.04 ic	0.00		0.00						0.041
2.60	6,761	577.60	5.35 ic	0.04 ic	0.00		0.00						0.042
2.70	7,171	577.70	5.35 ic	0.04 ic	0.00		0.00						0.043
2.80	7,580	577.80	5.35 ic	0.04 ic	0.08 ic		0.00						0.119
2.90	7,989	577.90	5.35 ic	0.04 ic	0.39 ic		0.00						0.439
3.00	8,399	578.00	5.35 ic	0.05 ic	0.85 ic		0.00						0.896
3.10	8,927	578.10	5.35 ic	0.05 ic	1.41 ic		0.00						1.456
3.20	9,455	578.20	5.35 ic	0.05 ic	2.06 ic		0.00						2.102
3.30	9,983	578.30	5.35 ic	0.05 ic	2.64 ic		0.59						3.279
3.40	10,511	578.40	6.18 ic	0.04 ic	3.04 ic		3.09						6.181
3.50	11,039	578.50	8.33 oc	0.01 ic	2.05 ic		6.27 s						8.330
3.60	11,567	578.60	8.44 oc	0.01 ic	1.35 ic		7.08 s						8.438
	•										Cantinu	oo on nov	+

Continues on next page...

DETENTION POND Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.70	12,095	578.70	8.52 oc	0.01 ic	0.99 ic		7.52 s						8.515
3.80	12,623	578.80	8.58 oc	0.00 ic	0.77 ic		7.79 s						8.568
3.90	13,152	578.90	8.64 oc	0.00 ic	0.63 ic		8.00 s						8.630
4.00	13,680	579.00	8.69 oc	0.00 ic	0.52 ic		8.15 s						8.677
4.10	14,327	579.10	8.75 oc	0.00 ic	0.44 ic		8.26 s						8.709
4.20	14,974	579.20	8.80 oc	0.00 ic	0.38 ic		8.38 s						8.762
4.30	15,622	579.30	8.85 oc	0.00 ic	0.34 ic		8.50 s						8.839
4.40	16,269	579.40	8.91 oc	0.00 ic	0.30 ic		8.56 s						8.856
4.50	16,917	579.50	8.96 oc	0.00 ic	0.27 ic		8.61 s						8.879
4.60	17,564	579.60	9.01 oc	0.00 ic	0.24 ic		8.76 s						9.008
4.70	18,211	579.70	9.06 oc	0.00 ic	0.22 ic		8.77 s						8.992
4.80	18,859	579.80	9.11 oc	0.00 ic	0.20 ic		8.90 s						9.108
4.90	19,506	579.90	9.16 oc	0.00 ic	0.19 ic		8.90 s						9.084
5.00	20,153	580.00	9.21 oc	0.00 ic	0.17 ic		8.90 s						9.076

...End

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 03 / 8 / 2023

Return Period	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)										
(Yrs)	В	D	E	(N/A)								
1	0.0000	0.0000	0.0000									
2	38.4810	7.5000	0.7610									
3	29.0800	2.9500	0.6030									
5	0.0000	0.0000	0.0000									
10	78.3870	12.2000	0.8170									
25	30.8270	3.0000	0.6020									
50	0.0000	0.0000	0.0000									
100	76.6220	8.5000	0.7480									
	1											

File name: SampleFHA.idf

Intensity = $B / (Tc + D)^E$

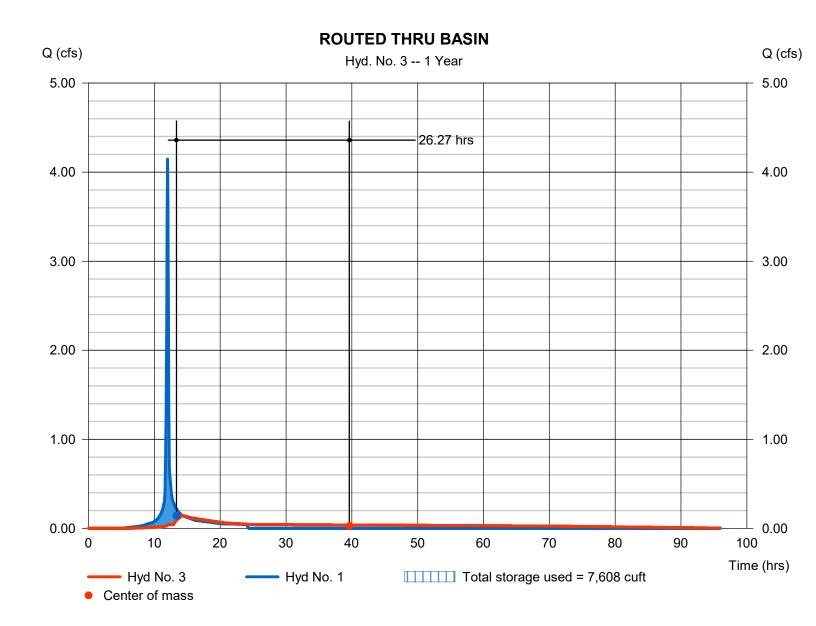
Return		Intensity Values (in/hr)													
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60			
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
2	5.63	4.36	3.60	3.09	2.72	2.44	2.22	2.04	1.89	1.76	1.65	1.56			
3	8.33	6.21	5.10	4.40	3.90	3.53	3.25	3.01	2.82	2.66	2.51	2.39			
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
10	7.67	6.23	5.27	4.60	4.08	3.68	3.36	3.10	2.87	2.68	2.52	2.38			
25	8.82	6.58	5.41	4.67	4.15	3.76	3.45	3.20	3.00	2.82	2.68	2.55			
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
100	10.94	8.64	7.22	6.25	5.54	4.99	4.56	4.20	3.90	3.65	3.43	3.25			

Tc = time in minutes. Values may exceed 60.

Precip. file name: Sample.pcp

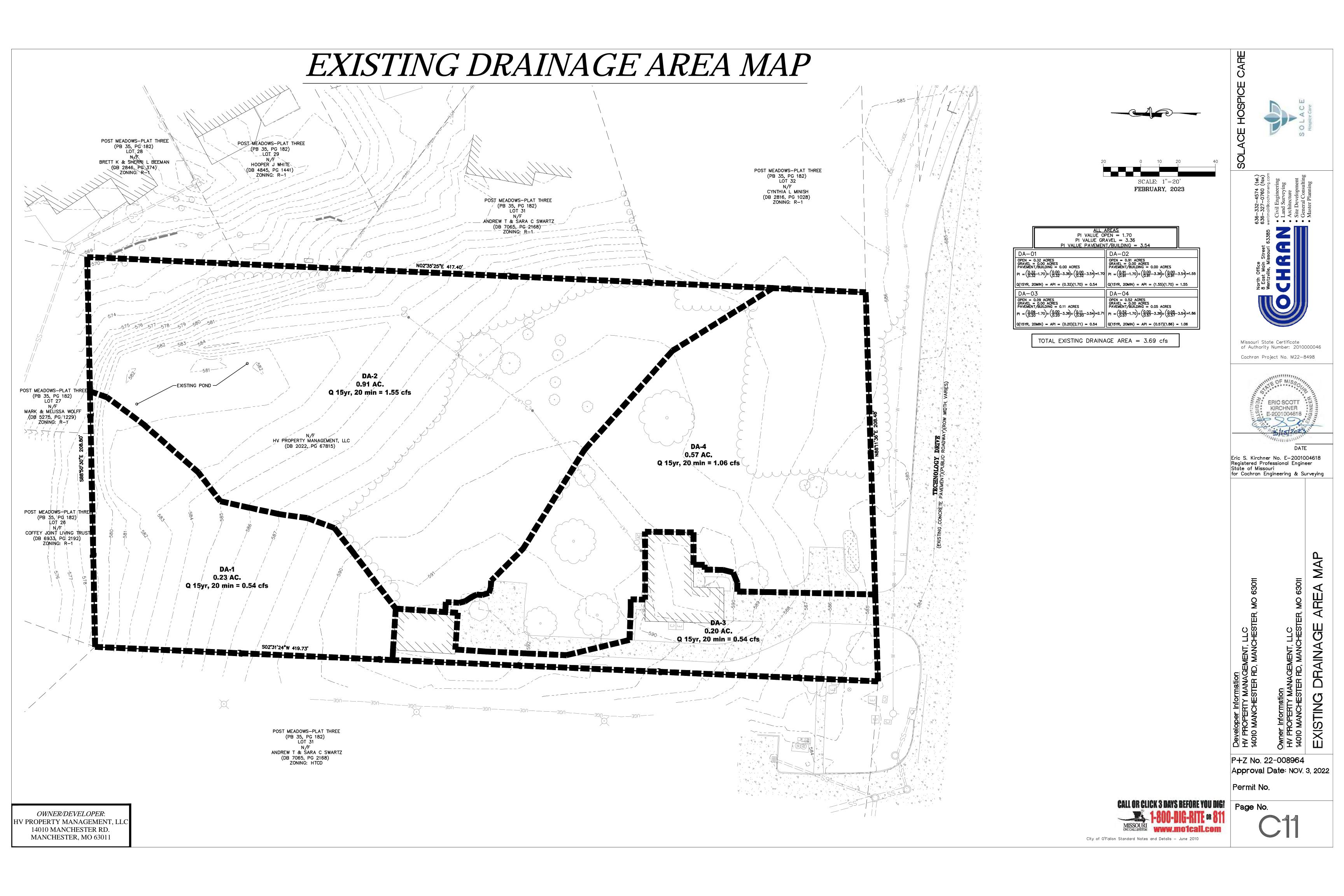
		Rainfall Precipitation Table (in)											
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
SCS 24-hour	2.50	2.20	0.00	3.30	4.25	5.77	6.80	7.95					
SCS 6-Hr	0.00	1.80	0.00	0.00	2.60	0.00	0.00	4.00					
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00					
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10					

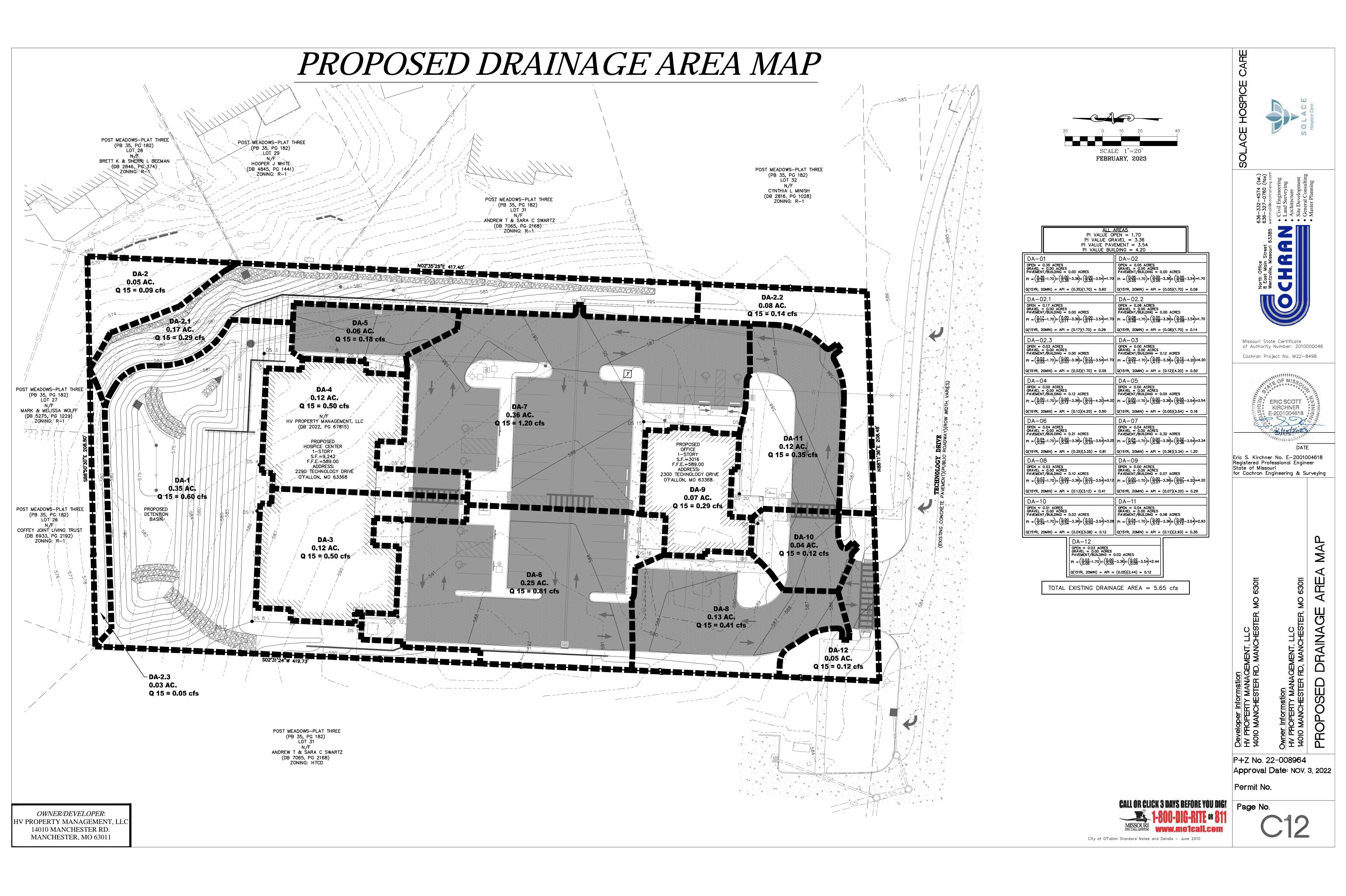
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

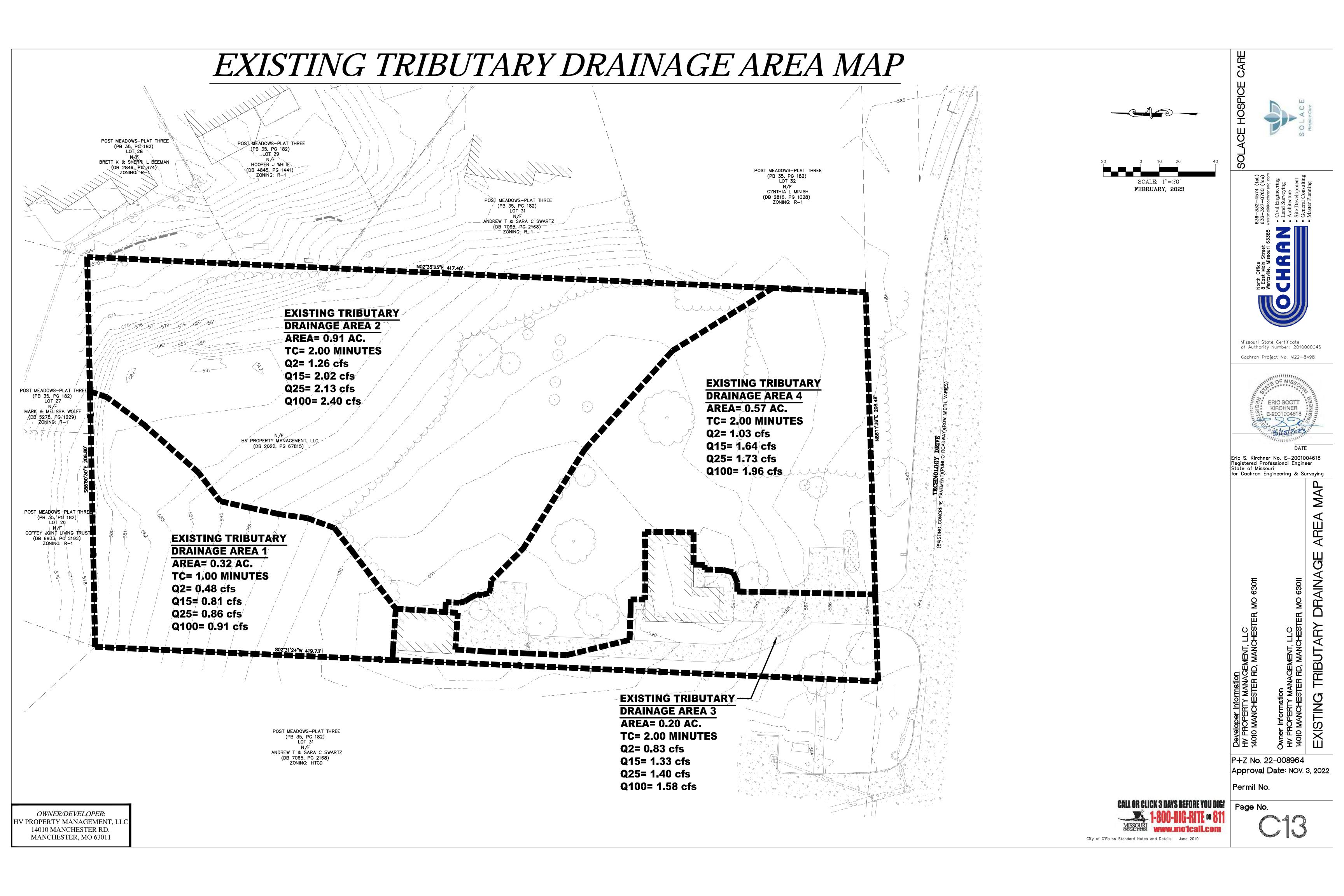

Wednesday, 03 / 8 / 2023

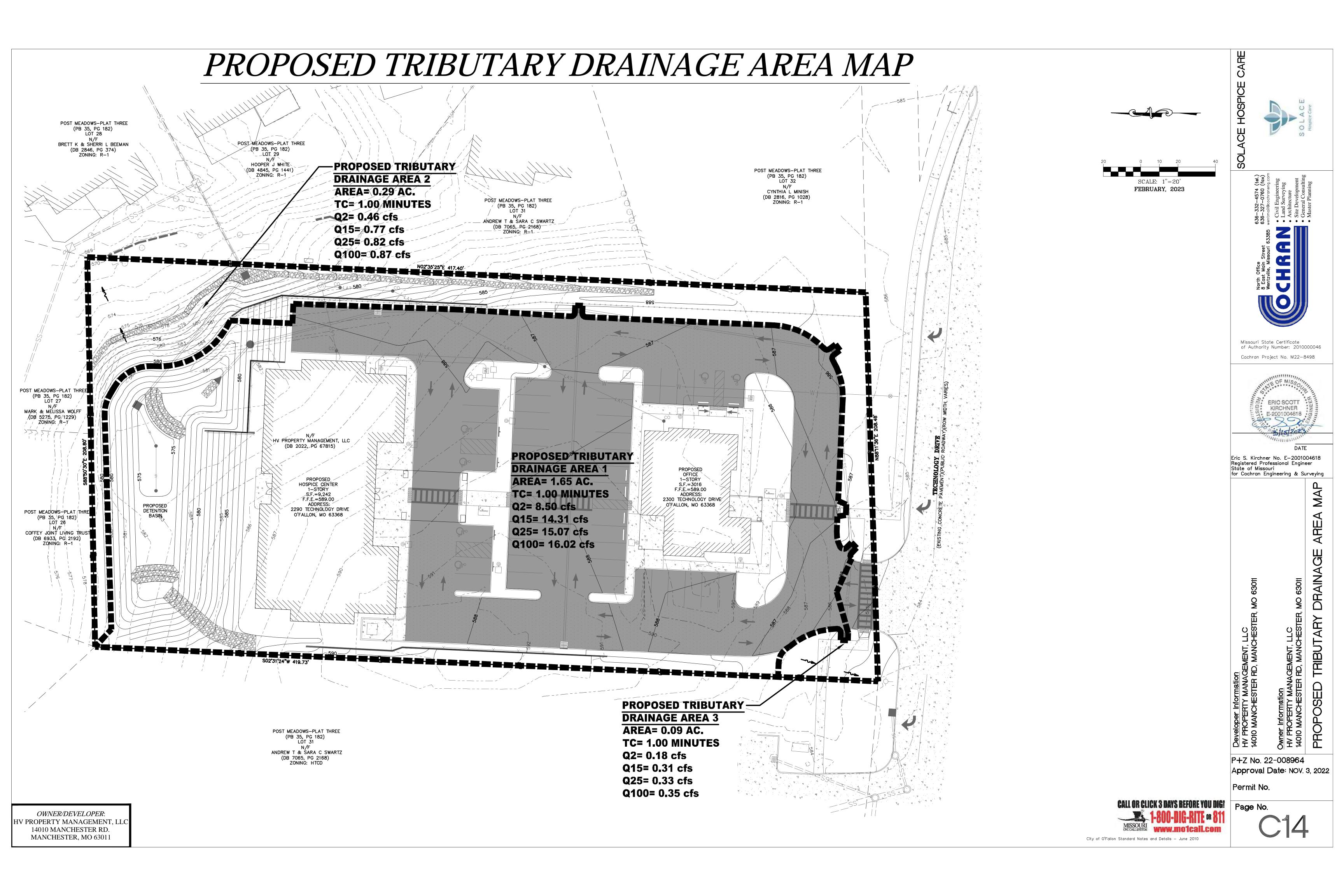
Hyd. No. 3

ROUTED THRU BASIN


Hydrograph type Peak discharge = 0.141 cfs= Reservoir Storm frequency Time to peak $= 14.33 \, hrs$ = 1 yrsTime interval = 2 min Hyd. volume = 10,912 cuft = 1 - P WQ#1 Max. Elevation Inflow hyd. No. = 577.81 ft= DETENTION POND Max. Storage = 7,608 cuft Reservoir name


Storage Indication method used.




Section 3

Drainage Area Maps

Section 4

Storm Sewer Hydrology

	Existing Rational Method 15yr, 20min													
Drainage Area #	Open Area (ac.)	Gravel Area (ac.)	Impervious Area (ac.)	Α	PI	Q								
1	0.32	-	-	0.32	1.70	0.54								
2	0.91	-	ı	0.91	1.70	1.55								
3	0.09	-	0.11	0.20	2.71	0.54								
4	0.52	-	0.05	0.57	1.86	1.06								

Q = API

A = total drainage area (acres)

P = runoff factor based on runoff from pervious and impervious surfaces

I = average intensity of rainfall for a given period and a given frequency (inches/hour)

	Proposed Rational Method 15yr, 20min					
Drainage Area #	Open Area (ac.)	Gravel Area (ac.)	Impervious Area (ac.)	А	PI	ď
1	0.35	-	_	0.35	1.70	0.60
2	0.05	-	_	0.05	1.70	0.09
2.1	0.17	-	_	0.17	1.70	0.29
2.2	0.08	-	_	0.08	1.70	0.14
2.3	0.03	-	_	0.03	1.70	0.05
3	-	-	0.12	0.12	4.20	0.50
4	-	-	0.12	0.12	4.20	0.50
5	-	-	0.05	0.05	3.54	0.18
6	0.04	-	0.21	0.25	3.25	0.81
7	0.04	-	0.32	0.36	3.34	1.20
8	0.03	-	0.10	0.13	3.12	0.41
9	-	-	0.07	0.07	4.20	0.29
10	0.01	-	0.03	0.04	3.08	0.12
11	0.04	-	0.08	0.12	2.93	0.35
12	0.03	_	0.02	0.05	2.44	0.12

Q = API

A = total drainage area (acres)

P = runoff factor based on runoff from pervious and impervious surfaces

I = average intensity of rainfall for a given period and a given frequency (inches/hour)

RESULTS

EXISTING =
PROPOSED =
PROPOSED OFFSITE =
PROPOSED TOTAL =
DIFFERENCE =

Тс				
2 YEAR	15 YEAR	25 YEAR	100 YEAR	
3.250	4.463	4.962	5.947	
8.109	10.352	11.514	13.791	
0.000	0.000	0.000	0.000	
8.109	10.352	11.514	13.791	
4.859	5.889	6.552	7.844	

EXISTING =
PROPOSED =
PROPOSED OFFSITE =
PROPOSED TOTAL =
DIFFERENCE =

1-HOUR				
2 YEAR	15 YEAR	25 YEAR	100 YEAR	
0.806	1.244	1.866	1.767	
1.903	2.935	4.403	4.170	
0.000	0.000	0.000	0.000	
1.903	2.935	4.403	4.170	
1.096	1.692	2.537	2.403	

EXISTING =
PROPOSED =
PROPOSED OFFSITE =
PROPOSED TOTAL =
DIFFERENCE =

24-HOUR				
2 YEAR	15 YEAR	25 YEAR	100 YEAR	
0.064	0.111	0.202	0.202	
0.152	0.261	0.476	0.477	
0.000	0.000	0.000	0.000	
0.152	0.261	0.476	0.477	
0.088	0.150	0.274	0.275	

WORST CASE FOR EACH STORM EVENT

EXISTING =
PROPOSED =
PROPOSED OFFSITE =
PROPOSED TOTAL =
DIFFERENCE =

2 YEAR	15 YEAR	25 YEAR	100 YEAR
3.250	4.463	4.962	5.947
8.109	10.352	11.514	13.791
0.000	0.000	0.000	0.000
8.109	10.352	11.514	13.791
4.859	5.889	6.552	7.844

	EX1				
OPEN	GRAVEL	PAVED	BUILDING		
13950	0	0	0		
13950	0	0	0		
0.064	0.000	0.000	0.000		
COMPO	SITE C =	0.	200		
L=	176	S =	0.074		
Tc =	1.139	I =	6.625		
Q =		0.	424		

	EX2				
OPEN	GRAVEL	PAVED	BUILDING		
39603	0	0	0		
39603	0	0	0		
0.182	0.000	0.000	0.000		
СОМРО	SITE C =	0.	200		
L =	301	S =	0.075		
Tc =	1.713	I =	6.388		
Q	=	1.	162		

EX3				
OPEN	GRAVEL	PAVED	BUILDING	
3743	0	4934	0	
3743	0	4934	0	
0.017	0.000	0.102	0.000	
COMPO	SITE C =	0.598		
L =	238	S =	0.031	
Tc =	2.009	l =	6.273	
Q	=	0.	747	

EX4				
OPEN	GRAVEL	PAVED	BUILDING	
22762	0	2119	0	
22762	0	2119	0	
0.105	0.000	0.044	0.000	
COMPO	SITE C =	0.	260	
L=	261	S =	0.028	
Tc =	2.243	I =	6.185	
Q	=	0.	917	

_				
	PC			
OPEN	GRAVEL	PAVED	BUILDING	OPI
21229	453	49449	0	1:
21229	453	49449	0	122
0.097	0.009	1.022	0.000	0.0
COMPO	SITE C =	0.	691	CO
L=	172	S =	0.093	L:
Tc =	1.025	l =	6.675	Tc =
Q	=	7.	529	

	POST 2				
OPEN	GRAVEL	PAVED	BUILDING		
12277	191	0	0		
12277	191	0	0		
0.056	0.004	0.000	0.000		
COMPO	SITE C =	0.	.210		
L=	64	S =	0.170		
Tc =	0.379	I =	6.970		
Q	=	0.	.419		

	PC	ST 3	·
OPEN	GRAVEL	PAVED	BUILDING
3369	0	380	0
3369	0	380	0
0.015	0.000	0.008	0.000
COMPOSITE C =		0.271	
L =	54	S =	0.054
Tc =	0.518	I =	6.905
Q =		0.	161

EXISTING =	3.250
PROPOSED =	8.109
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	8.109
DIFFERENCE =	4.859

RATIONAL DATA				
FREQUENC	2	YEARS		
DURATION	TC	MIN.		
I =	0.126			
C, IMP =	0.9			
C, PERV =	0.2			
C. GRA. =	0.85			

2 YEAR,1 HOUR

	EX1				
OPEN	GRAVEL	PAVED	BUILDING		
13950	0	0	0		
13950	0	0	0		
0.064	0.000	0.000	0.000		
COMPO	SITE C =	0	.200		
L =	176	S =	0.074		
Tc =	1.139	I =	1.571		
Q	Q = 0.101				

EX2				
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	0.200		
L =	301	S =	0.075	
Tc =	1.713 l =		1.571	
Q = 0.2		.286		

OPEN 3743	GRAVEL 0	PAVED 4934	BUILDING 0
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPOSI	TE C =	0.598	
L =	238	S =	0.031
Tc =	2.009	I =	1.571
Q =	2.003		.187

	E)	(4	
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPO	COMPOSITE C =		260
L =	261	S =	0.028
Tc =	2.243	l =	1.571
Q	=	0.2	233

POST 1			
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	SITE C =	0.691	
L=	172	S =	0.093
Tc =	1.025	l =	1.571
Q =		1	772

POST 2			
OPEN	GRAVEL	PAVED	BUILDING
12277	191	0	0
12277	191	0	0
0.056	0.004	0.000	0.000
COMPO	SITE C =	0.210	
L=	64	S =	0.170
Tc =	0.379	l =	1.571
Q =		0	.094

POST 3				
OPEN	GRAVEL	PAVED	BUILDING	
3369	0	380	0	
3369	0	380	0	
0.015	0.000	0.008	0.000	
COMPOSITE C =		0.271		
L =	54	S =	0.054	
Tc =	0.518	l =	1.571	
Q = 0.037		.037		

 EXISTING =
 0.806

 PROPOSED =
 1.903

 PROPOSED OFFSITE =
 0.000

 PROPOSED TOTAL =
 1.903

 DIFFERENCE =
 1.096

RAT	IONAL D	ATA	
FREQUENC	2	YEARS	
DURATION	60	MIN.	
I =	1.571		
C, IMP =	0.9		
C, PERV =	0.2		
C, GRA. =	0.85		

2 YEAR,24 HOUR

21229

21229

0.097

L =

COMPOSITE C =

Q=

EX1			
OPEN	GRAVEL	PAVED	BUILDING
13950	0	0	0
13950	0	0	0
0.064	0.000	0.000	0.000
COMPO	SITE C =	0.200	
L =	176	S =	0.074
Tc =	1.139	I =	0.126
Q	=	0.008	

POST 1

OPEN GRAVEL PAVED BUILDING

49449

49449

1.022

S =

0

0.000

0.093

0.126

0.691

0.142

453

453

172

1.025

0.009

EX2			
OPEN	GRAVEL	PAVED	BUILDING
39603	0	0	0
39603	0	0	0
0.182	0.000	0.000	0.000
COMPOSITE C =		0	.200
L =	301	S =	0.075
Tc =	1.713	I =	0.126
Q =		0	.023

	Q =		0	.023	
ı	POST 2				
	OPEN	GRAVEL	PAVED	BUILDING	
	12277	191	0	0	
	12277	191	0	0	
	0.056	0.004	0.000	0.000	
	COMPOSITE C =		0	.210	
	L =	64	S =	0.170	
	Tc =	0.379	I =	0.126	
	Q	=	0	.008	

EX3			
OPEN	GRAVEL	PAVED	BUILDING
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPOSITE C =		0	.598
L =	238	S =	0.031
Tc =	2.009	l =	0.126
Q =		0	.015

POST 3				
OPEN	GRAVEL	PAVED	BUILDING	
3369	0	380	0	
3369	0	380	0	
0.015	0.000	0.008	0.000	
COMPOSITE C =		0	.271	
L =	54	S =	0.054	
Гс =	0.518	l =	0.126	
Q	=	0	.003	
			•	

EX4			
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPOSITE C =		0.2	260
L=	261	S =	0.028
Tc =	2.243	I =	0.126
Q =		0.0)19

EXISTING =	0.064
PROPOSED =	0.152
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	0.152
DIFFERENCE =	0.088

RATIONAL DATA						
FREQUENC	2	YEARS				
DURATION	1440	MIN.				
I =	0.126					
C, IMP =	0.9					
C, PERV =	0.2					
C, GRA. =	0.85					

15 YEAR, TC

EX1				
OPEN	GRAVEL	PAVED	BUILDING	
13950	0	0	0	
13950	0	0	0	
0.064	0.000	0.000	0.000	
COMPOSITE C =		0.	200	
L=	176	S =	0.074	
Tc =	1.139	l =	9.043	
Q =		0.	579	

	EX2					
OPEN	GRAVEL	PAVED	BUILDING			
39603	0	0	0			
39603	0	0	0			
0.182	0.000	0.000	0.000			
COMPOSITE C =		0.	.200			
L =	301	S =	0.075			
Tc =	1.713	l =	8.761			
Q	=	1.	.593			

	EX3					
OPEN	GRAVEL	PAVED	BUILDING			
3743	0	4934	0			
3743	0	4934	0			
0.017	0.000	0.102	0.000			
СОМРО	SITE C =	0.598				
L =	238	S =	0.031			
Tc =	2.009	I =	8.624			
Q	=	1.	027			

EX4					
OPEN	GRAVEL	PAVED	BUILDING		
22762	0	2119	0		
22762	0	2119	0		
0.105	0.000	0.044	0.000		
COMPOSITE C =		0.260			
L=	261	S =	0.028		
Tc =	2.243	I =	8.518		
Q	=	1.	263		

	PC				
OPEN	GRAVEL	PAVED	BUILDING	OPEN	GRAVE
21229	453	49449	0	12277	1
21229	453	49449	0	12277	191
0.097	0.009	1.022	0.000	0.056	0.004
COMPOSITE C =		0.691		COMPO	SITE C =
L=	172	S =	0.012	L =	64
Tc =	2.284	I =	8.500	Tc =	0.8
Q	=	9.	588	Q	=

	POST 2					
OPEN	GRAVEL	PAVED	BUILDING			
12277	191	0	0			
12277	191	0	0			
0.056	0.004	0.000	0.000			
COMPO	SITE C =	0.	.210			
L =	64	S =	0.019			
Tc =	0.877	I =	9.178			
Q	=	0.	.552			

POST 3					
OPEN	GRAVEL	PAVED	BUILDING		
3369	0	380	0		
3369	0	380	0		
0.015	0.000	0.008	0.000		
COMPO	SITE C =	0.271			
L =	54	S =	0.009		
Tc =	1.047	l =	9.090		
Q	=	0.	.212		

 EXISTING =
 4.463

 PROPOSED =
 10.352

 PROPOSED OFFSITE =
 0.000

 PROPOSED TOTAL =
 10.352

 DIFFERENCE =
 5.889

RATIONAL DATA						
FREQUENC	15	YEARS				
DURATION	TC	MIN.				
I =	N/A					
C, IMP =	0.9					
C, PERV =	0.2					
C GRA =	0.85					

15 YEAR, 1-HOUR

EX1					
OPEN	GRAVEL	PAVED	BUILDING		
13950	0	0	0		
13950	0	0	0		
0.064	0.000	0.000	0.000		
COMPOSITE C =		0.200			
L =	176	S =	0.074		
Tc =	1.139	I =	2.423		
Q =		0	.155		

EX2					
OPEN	GRAVEL	PAVED	BUILDING		
39603	0	0	0		
39603	0	0	0		
0.182	0.000	0.000	0.000		
COMPOSITE C =		0	.200		
L =	301	S =	0.075		
Tc =	1.713	I =	2.423		
Q	=	0	.441		

EX3					
OPEN	GRAVEL	PAVED	BUILDING		
3743	0	4934	0		
3743	0	4934	0		
0.017	0.000	0.102	0.000		
COMPOSITE C =		0.598			
L =	238	S =	0.031		
Tc =	2.009	l =	2.423		
Q	=	0	.289		

	EX4				
OPEN	GRAVEL	PAVED	BUILDING		
22762	0	2119	0		
22762	0	2119	0		
0.105	0.000	0.044	0.000		
COMPO	SITE C =	0.2	260		
L=	261	S =	0.028		
Tc =	2.243	I =	2.423		
Q	=	0.3	359		

	POST 1		
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	SITE C =	0	0.691
L =	172	S =	0.012
Tc =	2.284	l =	2.423
Q	=	2	733

POST 2				
OPEN	GRAVEL	PAVED	BUILDING	
12277	191	0	0	
12277	191	0	0	
0.056	0.004	0.000	0.000	
COMPO	SITE C =	0	.210	
L=	64	S =	0.019	
Tc =	0.877	l =	2.423	
Q	=	0	.146	

	POST 3				
OPEN	GRAVEL	PAVED	BUILDING		
3369	0	380	o		
3369	0	380	0		
0.015	0.000	0.008	0.000		
СОМРО	SITE C =	0	.271		
L =	54	S =	0.009		
Гс =	1.047	l =	2.423		
Q	=	0	.057		

EXISTING =	1.244
PROPOSED =	2.935
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	2.935
DIFFERENCE =	1.692

RATIONAL DATA				
FREQUENC	15	YEARS		
DURATION	60	MIN.		
1 =	2.423			
C, IMP =	0.9			
C, PERV =	0.2			
C. GRA. =	0.85			

15 YEAR, 24-HOUR

		EX1	
OPEN	GRAVEL	PAVED	BUILDING
13950	0	0	0
13950	0	0	0
0.064	0.000	0.000	0.000
COMPO	SITE C =	0.200	
L =	176	S =	0.074
Tc =	1.139	I =	0.216
Q	=	0	.014

	EX2			
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	0	.200	
L =	301	S =	0.075	
Tc =	1.713	I =	0.216	
Q	=	0	.039	

OPEN	GRAVEL	PAVED	BUILDING
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPO	SITE C =	0	.598
L=	238	S =	0.031
Tc =	2.009	I =	0.216
Q	=	0	.026
			•
	P	OST 3	•
OPEN	GRAVEL	PAVED	BUILDING

EX3

	E)	K2	
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPO	SITE C =	0.2	260
L=	261	S =	0.028
Tc =	2.243	I =	0.216
Q	=	0.0)32

	POST 1		
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	SITE C =	0	.691
L=	172	S =	0.012
Tc =	2.284	l =	0.216
Q	=	0	.243

	POST 2		
OPEN	GRAVEL	PAVED	BUILDING
12277	191	0	0
12277	191	0	0
0.056	0.004	0.000	0.000
COMPO	SITE C =	0	.210
L =	64	S =	0.019
Tc =	0.877	l =	0.216
Q	=	0	.013

POST 3				
OPEN	GRAVEL	PAVED	BUILDING	
3369	0	380	o	
3369	0	380	0	
0.015	0.000	0.008	0.000	
COMPOSITE C =		0	.271	
L =	54	S =	0.009	
Гс =	1.047	l =	0.216	
Q	Q =		.005	

 EXISTING =
 0.111

 PROPOSED =
 0.261

 PROPOSED OFFSITE =
 0.000

 PROPOSED TOTAL =
 0.261

 DIFFERENCE =
 0.150

RATIONAL DATA				
FREQUENC	15	YEARS		
DURATION 1440		MIN.		
I = 0.215542				
C, IMP =	0.9			
C, PERV =	0.2			
C GRA =	0.85			

25 YEAR, TC

21229

21229

0.097

L =

COMPOSITE C =

Q=

453

0.009

172

2.284 I =

	EX1				
OPEN	GRAVEL	PAVED	BUILDING		
13950	0	0	0		
13950	0	0	0		
0.064	0.000	0.000	0.000		
СОМРО	SITE C =	0	.200		
L =	176	S =	0.074		
Tc =	1.139	l =	10.043		
Q	=	0	.643		

POST 1

OPEN GRAVEL PAVED BUILDING

49449

49449

1.022

S =

0

0.000

0.012

9.456

0.691

10.666

	EX2			
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	0	.200	
L =	301	S =	0.075	
Tc =	1.713	I =	9.739	
Q	=	1	.771	

	POST 2			
OPEN	GRAVEL	PAVED	BUILDING	
12277	191	0	0	
12277	191	0	0	
0.056	0.004	0.000	0.000	
СОМРО	SITE C =	0	.210	
L =	64	S =	0.019	
Tc =	0.877	l =	10.190	
Q	=	0	.612	

	EX3				
OPEN	GRAVEL	PAVED	BUILDING		
3743	0	4934	0		
3743	0	4934	0		
0.017	0.000	0.102	0.000		
COMPO	SITE C =	0	.598		
L =	238	S =	0.031		
Tc =	2.009	l =	9.590		
Q	=	1	.142		

POST 3			
OPEN	GRAVEL	PAVED	BUILDING
3369	0	380	0
3369	0	380	0
0.015	0.000	0.008	0.000
COMPOSITE C =		0	.271
L =	54	S =	0.009
Tc =	1.047	l =	10.094
Q = 0.235		.235	

EX4			
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPO	SITE C =	0.2	260
L =	261	S =	0.028
Tc =	2.243	l =	9.476
Q	=	1.4	105

EXISTING =	4.962
PROPOSED =	11.514
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	11.514
DIFFERENCE =	6.552

RAT	RATIONAL DATA				
FREQUENC	25	YEARS			
DURATION	TC	MIN.			
I =	N/A				
C, IMP =	0.9				
C, PERV =	0.2				
C, GRA. =	0.85				

25 YEAR, 1-HOUR

	EX1			
OPEN	GRAVEL	PAVED	BUILDING	
13950	0	0	0	
13950	0	0	0	
0.064	0.000	0.000	0.000	
COMPO	SITE C =	0	.200	
L =	176	S =	0.074	
Tc =	1.139	I =	3.635	
Q	=	0	.233	

	EX2			
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	0	.200	
L =	301	S =	0.075	
Tc =	1.713	I =	3.635	
Q	=	0	.661	

OPEN GRAVEL PAVED BUILDING 3743 0 4934 0 3743 0 4934 0 0.017 0.000 0.102 0.000 COMPOSITE C = 0.598 L = 238 S = 0.031 Tc = 2.009 I = 3.635 Q = 0.433		EX3			
3743 0 4934 0 0.017 0.000 0.102 0.000 COMPOSITE C = 0.598 L = 238 S = 0.031 TC = 2.009 I = 3.635	OPEN	GRAVEL	PAVED	BUILDING	
0.017 0.000 0.102 0.000 COMPOSITE C = 0.598 0.031 L = 238 S = 0.031 Tc = 2.009 I = 3.635	3743	0	4934	0	
COMPOSITE C = 0.598 L = 238 S = 0.031 Tc = 2.009 I = 3.635	3743	0	4934	0	
L = 238 S = 0.031 Tc = 2.009 I = 3.635	0.017	0.000	0.102	0.000	
Tc = 2.009 I = 3.635	COMPOSITE C =		0	.598	
	L =	238	S =	0.031	
Q = 0.433	Tc =	2.009	l =	3.635	
	Q	=	0	.433	

	EX4				
OPEN	GRAVEL	PAVED	BUILDING		
22762	0	2119	0		
22762	0	2119	0		
0.105	0.000	0.044	0.000		
COMPOSITE C =		0.2	260		
L=	261	S =	0.028		
Tc =	2.243	I =	3.635		
Q	=	0.5	39		

	PO	OST 1	
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	COMPOSITE C =		0.691
L =	172	S =	0.012
Tc =	2.284	l =	3.635
Q	=	4	.100
		•	

POST 2				
OPEN	GRAVEL	PAVED	BUILDING	
12277	191	0	0	
12277	191	0	0	
0.056	0.004	0.000	0.000	
COMPO	SITE C =	0.210		
L =	64	S =	0.019	
Tc =	0.877	I =	3.635	
Q	=	0	.218	

	POST 3				
OPEN	GRAVEL	PAVED	BUILDING		
3369	0	380	0		
3369	0	380	0		
0.015	0.000	0.008	0.000		
COMPOSITE C =		0	.271		
L =	54	S =	0.009		
Гс =	1.047	l =	3.635		
Q	=	0	.085		

EXISTING =	1.866
PROPOSED =	4.403
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	4.403
DIFFERENCE =	2.537

RA	RATIONAL DATA				
FREQUENC	25	YEARS			
DURATION	60	MIN.			
I =	3.634686				
C, IMP =	0.9				
C, PERV =	0.2				
C. GRA. =	0.85				

25 YEAR, 24-HOUR

		EX1	
OPEN	GRAVEL	PAVED	BUILDING
13950	0	0	0
13950	0	0	0
0.064	0.000	0.000	0.000
СОМРО	SITE C =	0	.200
L =	176	S =	0.074
Tc =	1.139	I =	0.393
Q	=	0	.025

	EX2			
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	= 0.200		
L =	301	S =	0.075	
Tc =	1.713	I =	0.393	
Q	=	0	.071	

		EX3	
OPEN	GRAVEL	PAVED	BUILDING
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPO	SITE C =	0	.598
L =	238	S =	0.031
Tc =	2.009	l =	0.393
Q	=	0	.047
•	•	•	•

	E)	X4	
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPO	COMPOSITE C =		260
L=	261	S =	0.028
Tc =	2.243	I =	0.393
Q	=	0.0)58

	POST 1		
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	SITE C =	0.691	
L=	172	S =	0.012
Tc =	2.284	I =	0.393
Q	=	0	.443

	P	OST 2	
OPEN	GRAVEL	PAVED	BUILDING
1227	7 191	0	0
12277	191	0	0
0.056	0.004	0.000	0.000
COMP	OSITE C =	0	.210
L =	64	S =	0.019
Tc =	0.877	I =	0.393
	ე =	0	.024

	POST 3			
OPEN	GRAVEL	PAVED	BUILDING	
3369	0	380	0	
3369	0	380	0	
0.015	0.000	0.008	0.000	
COMPO	SITE C =	0	.271	
L =	54	S =	0.009	
Tc =	1.047	I =	0.393	
Q	=	0	.009	

EXISTING =	0.202
PROPOSED =	0.476
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	0.476
DIFFERENCE =	0.274

RATIONAL DATA			
FREQUENC	25	YEARS	
DURATION	1440	MIN.	
I =	0.392853		
C, IMP =	0.9		
C, PERV =	0.2		
C. GRA. =	0.85		

100 YEAR, TC

		EX1	
OPEN	GRAVEL	PAVED	BUILDING
13950	0	0	0
13950	0	0	0
0.064	0.000	0.000	0.000
СОМРО	SITE C =	0	.200
L =	176	S =	0.074
Tc =	1.139	l =	12.060
Q	=	0	.772

		EX2	
OPEN	GRAVEL	PAVED	BUILDING
39603	0	0	0
39603	0	0	0
0.182	0.000	0.000	0.000
COMPO	SITE C =	0	.200
L =	301	S =	0.075
Tc =	1.713	I =	11.677
Q	=	2	.123

		EX3	
OPEN	GRAVEL	PAVED	BUILDING
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPO	SITE C =	0	.598
L =	238	S =	0.031
Tc =	2.009	l =	11.490
Q	=	1	369

	E)	(4	
OPEN	GRAVEL	PAVED	BUILDING
22762	0	2119	0
22762	0	2119	0
0.105	0.000	0.044	0.000
COMPO	COMPOSITE C =		260
L =	261	S =	0.028
Tc =	2.243	l =	11.348
Q	=	1.6	583

	POST 1			
OPEN	GRAVEL	PAVED	BUILDING	
21229	453	49449	0	
21229	453	49449	0	
0.097	0.009	1.022	0.000	
COMPO	SITE C =	0	.691	
L =	172	S =	0.012	
Tc =	2.284	l =	11.323	
Q	=	12	2.772	

	P	OST 2	
OPEN	GRAVEL	PAVED	BUILDING
12277	191	0	0
12277	191	0	0
0.056	0.004	0.000	0.000
COMPO	SITE C =	0	.210
L =	64	S =	0.019
Tc =	0.877	I =	12.245
C	(=	0	.736

POST 3			
OPEN	GRAVEL	PAVED	BUILDING
3369	0	380	0
3369	0	380	0
0.015	0.000	0.008	0.000
COMPO	SITE C =	0.271	
L =	54	S =	0.009
Tc =	1.047	I =	12.124
Q	=	0	.283

 EXISTING =
 5.947

 PROPOSED =
 13.791

 PROPOSED OFFSITE =
 0.000

 PROPOSED TOTAL =
 13.791

 DIFFERENCE =
 7.844

RATIONAL DATA				
FREQUENC	100	YEARS		
DURATION	TC	MIN.		
I =	N/A			
C, IMP =	0.9			
C, PERV =	0.2			
C GRA =	0.85			

100 YEAR, 1 HOUR

	EX1			
OPEN	GRAVEL	PAVED	BUILDING	
13950	0	0	0	
13950	0	0	0	
0.064	0.000	0.000	0.000	
COMPO	SITE C =	0.200		
L =	176	S =	0.074	
Tc =	1.139	I =	3.442	
Q	=	0	.220	

	EX2			
OPEN	GRAVEL	PAVED	BUILDING	
39603	0	0	0	
39603	0	0	0	
0.182	0.000	0.000	0.000	
COMPO	SITE C =	0	.200	
L =	301	S =	0.075	
Tc =	1.713	I =	3.442	
Q =		0	.626	

EX3			
OPEN	GRAVEL	PAVED	BUILDING
3743	0	4934	0
3743	0	4934	0
0.017	0.000	0.102	0.000
COMPOSITE C =		0	.598
L =	238	S =	0.031
Tc =	2.009	l =	3.442
Q	=	0	.410

	EX4				
OPEN	GRAVEL	PAVED	BUILDING		
22762	0	2119	0		
22762	0	2119	0		
0.105	0.000	0.044	0.000		
COMPO	COMPOSITE C =		260		
L=	261	S =	0.028		
Tc =	2.243	I =	3.442		
Q	=	0.5	510		

POST 1			
OPEN	GRAVEL	PAVED	BUILDING
21229	453	49449	0
21229	453	49449	0
0.097	0.009	1.022	0.000
COMPO	COMPOSITE C =		.691
L=	172	S =	0.012
Tc =	2.284	l =	3.442
Q	=	3.882	

POST 2				
OPEN	GRAVEL	PAVED	BUILDING	
12277	191	0	0	
12277	191	0	0	
0.056	0.004	0.000	0.000	
COMPOSITE C = 0.210		.210		
L=	64	S =	0.019	
Tc =	0.877	I =	3.442	
Q	=	0	.207	

	POST 3				
OPEN	GRAVEL	PAVED	BUILDING		
3369	0	380	o		
3369	0	380	0		
0.015	0.000	0.008	0.000		
COMPOSITE C =		0.271			
L =	54	S =	0.009		
Гс =	1.047	l =	3.442		
Q =		0	.080		

EXISTING =	1.767
PROPOSED =	4.170
PROPOSED OFFSITE =	0.000
PROPOSED TOTAL =	4.170
DIFFERENCE =	2.403

I	RATIONAL DATA				
I	FREQUENC	100	YEARS		
ı	DURATION	60	MIN.		
ı	l =	3.441978			
ŀ	C, IMP =	0.9			
ŀ	C, PERV =	0.2			
ь	C. GRA. =	0.85			

100 YEAR, 24 HOUR

	EX1			
OPEN	GRAVEL	PAVED	BUILDING	
13950	0	0	0	
13950	0	0	0	
0.064	0.000	0.000	0.000	
COMPO	SITE C =	0.200		
L =	176	S =	0.074	
Tc =	1.139	I =	0.393	
Q	=	0.025		

	EX2				
OPEN	GRAVEL	PAVED	BUILDING		
39603	0	0	0		
39603	0	0	0		
0.182	0.000	0.000	0.000		
COMPO	SITE C =	0.200			
L =	301	S =	0.075		
Tc =	1.713	I =	0.393		
Q	=	0	.072		

	EX3				
OPEN	GRAVEL	PAVED	BUILDING		
3743	0	4934	0		
3743	0	4934	0		
0.017	0.000	0.102	0.000		
COMPO	SITE C =	0	.598		
L =	238	S =	0.031		
Tc =	2.009	l =	0.393		
Q =		0	.047		

	EX4							
OPEN	GRAVEL	PAVED	BUILDING					
22762	0	2119	0					
22762	0	2119	0					
0.105	0.000	0.044	0.000					
COMPO	SITE C =	0.2	260					
L=	261	S =	0.028					
Tc =	2.243	l =	0.393					
Q	=	0.0)58					

	PO	OST 1						
OPEN	GRAVEL	PAVED	BUILDING					
21229	453	49449	0					
21229	453	49449	0					
0.097	0.009	1.022	0.000					
COMPO	SITE C =	C	0.691					
L=	172	S =	0.012					
Tc =	2.284	I =	0.393					
Q	=	C).444					

	PO	OST 2	BUILDING			
OPEN	GRAVEL	PAVED	BUILDING			
12277	191	0	0			
12277	191	0	0			
0.056	0.004	0.000	0.000			
СОМРО	SITE C =	0	.210			
L =	64	S =	0.019			
Tc =	0.877	l =	0.393			
Q	=	0	.024			

•	PC	OST 3	
OPEN	GRAVEL	PAVED	BUILDING
3369	0	380	0
3369	0	380	0
0.015	0.000	0.008	0.000
COMPO	SITE C =	0	.271
L =	54	S =	0.009
Гс =	1.047	l =	0.393
Q	=	0	.009

 EXISTING =
 0.202

 PROPOSED =
 0.477

 PROPOSED OFFSITE =
 0.000

 PROPOSED TOTAL =
 0.477

 DIFFERENCE =
 0.275

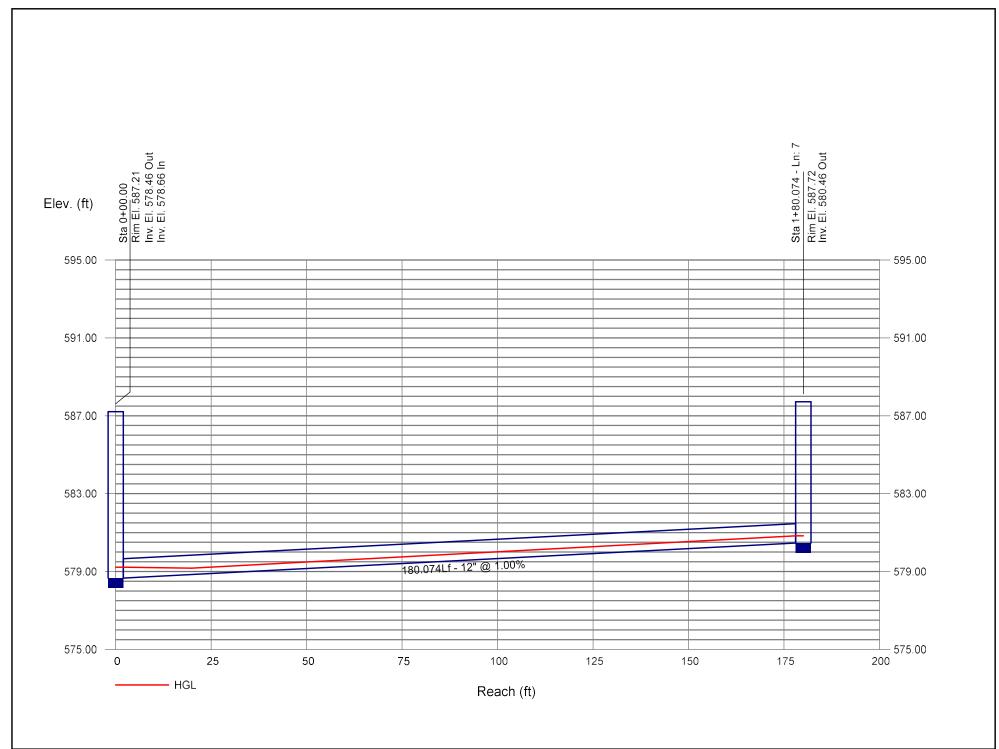
RATIONAL DATA									
FREQUENC	25	YEARS							
DURATION	1440	MIN.							
I =	0.393422								
C, IMP =	0.9								
C, PERV =	0.2								
C. GRA. =	0.85								

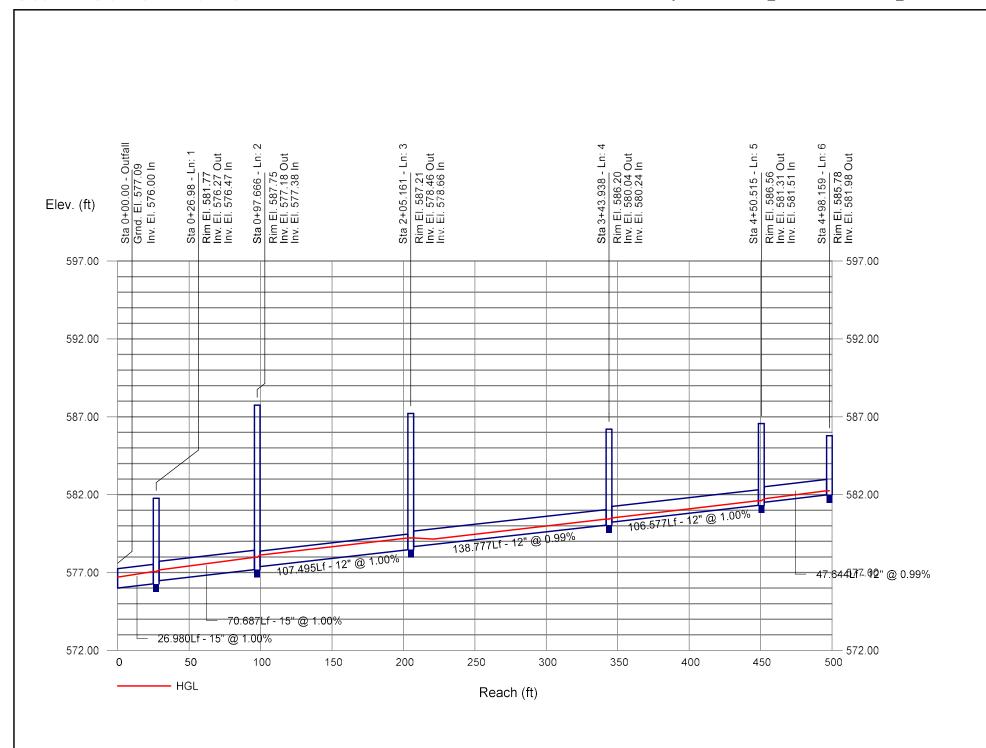
Section 5

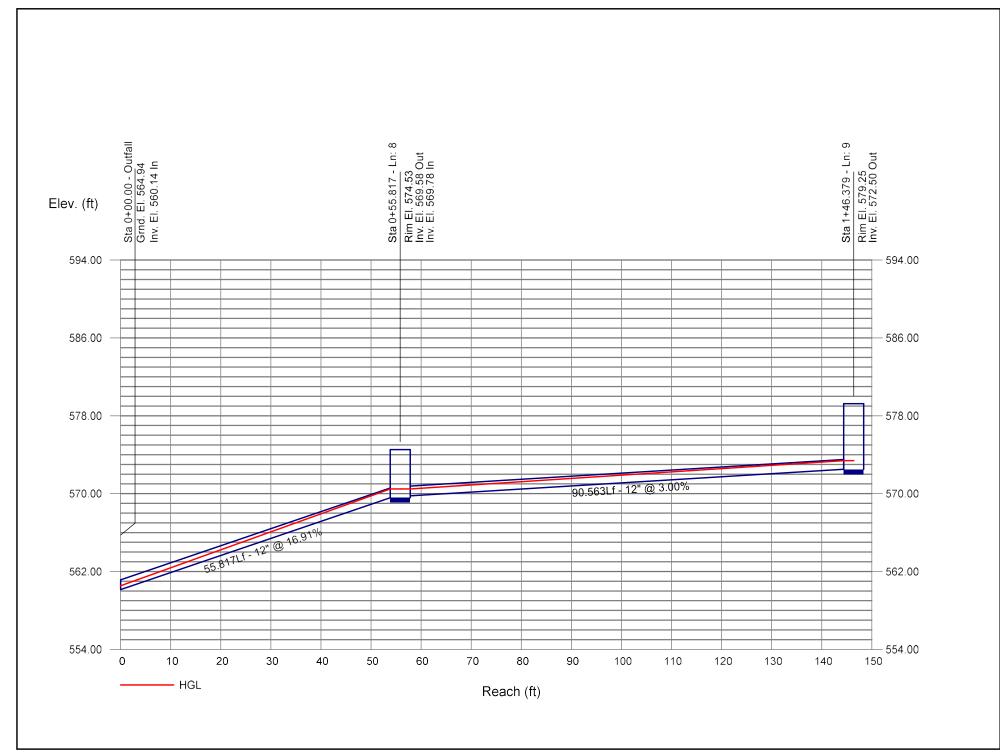
Storm Sewer Hydraulics

Downspout Collector Calculation

HGL CALCS

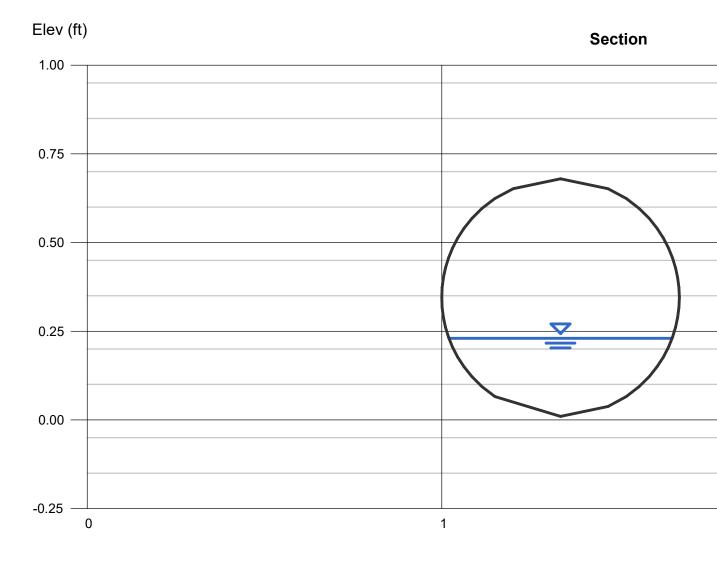

Line No.	Line ID	DnStm Ln No	Invert Dn	Invert Up	Line Length	Line Slope	Line Size	Capac Full	Known Q	Flow Rate	Depth Dn	HGL Dn	HGL Up	Vel Ave	Vel Dn	Rim-Hw	
			(ft)	(ft)	(ft)	(%)	(in)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft/s)	(ft/s)	(ft)	
1	FES 3 - OS 4	Outfall	576.00	576.27	26.980	1.00	15	6.46	0.00	3.86	0.70	576.70	577.06	5.10	5.50	4.71	
2	MH 4 - GCI 5	1	576.47	577.18	70.687	1.00	15	6.47	0.68	3.86	0.70	577.17	577.97	5.10	5.50	9.78	
3	GCI 5 - CI 6	2	577.38	578.46	107.495	1.00	12	0.00	1.49	3.18	0.00	578.12	579.22	5.04	5.14	7.99	
4	CI 6 - CI 7	3	578.66	580.04	138.777	0.99	12	0.00	0.35	0.88	0.00	579.22	580.43	2.50	1.93	5.77	
5	CI 7 - CI 8	4	580.24	581.31	106.577	1.00	12	0.00	0.12	0.53	0.00	580.50	581.61	2.95	3.26	4.95	
6	CI 8 - CI 9	5	581.51	581.98	47.644	0.99	12	0.00	0.41	0.41	0.00	581.74	582.24	2.73	3.00	3.54	
7	CI 6 - GCI 10	3	578.66	580.46	180.074	1.00	12	0.00	0.81	0.81	0.00	579.22	580.84	2.39	1.78	6.88	
8	EX AI - AI 1	Outfall	560.14	569.58	55.817	16.91	12	0.00	0.29	5.25	0.00	560.53	570.48	11.50	16.64	4.05	
9	AI 1 - OS 2	8	569.78	572.50	90.563	3.00	12	0.00	4.96	4.96	0.00	570.48	573.38	6.82	7.57	5.87	


Project File: M22-8498_STORM NETWORK_2023-04-17.stm


Number of lines: 9

Date: 4/17/2023

NOTES: ** Critical depth

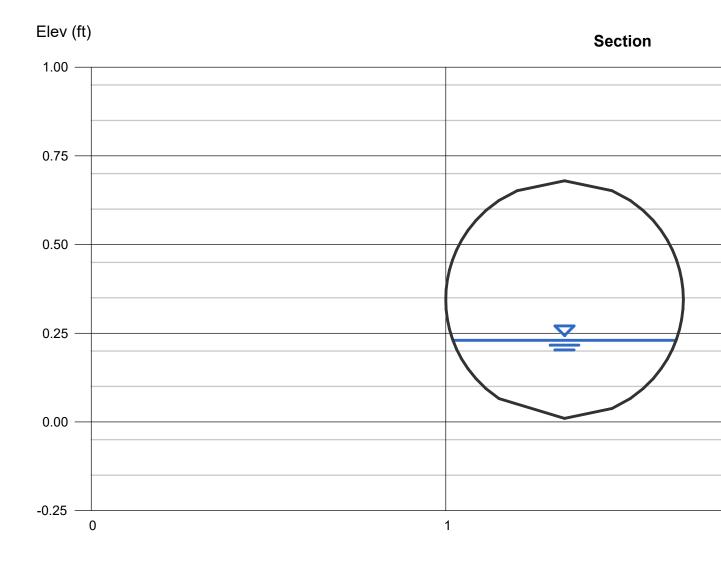


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Feb 1 2023

DOWNSPOUT COLLECTOR 1

		Highlighted	
- (ft) =	0.67	Depth (ft) =	0.22
. ,		Q (cfs) =	0.460
		Area (sqft) =	0.10
ev (ft) =	0.01	Velocity (ft/s) =	4.52
s) =	2.00	Wetted Perim (ft) =	0.82
=	0.011	Crit Depth, Yc (ft) =	0.32
		Top Width (ft) =	0.63
ions		EGL (ft) =	0.54
by: Kı	(nown Q		
(cfs) =	0.46		
i ons e by: Ki	ínown Q	Top Width (ft) =	0.6

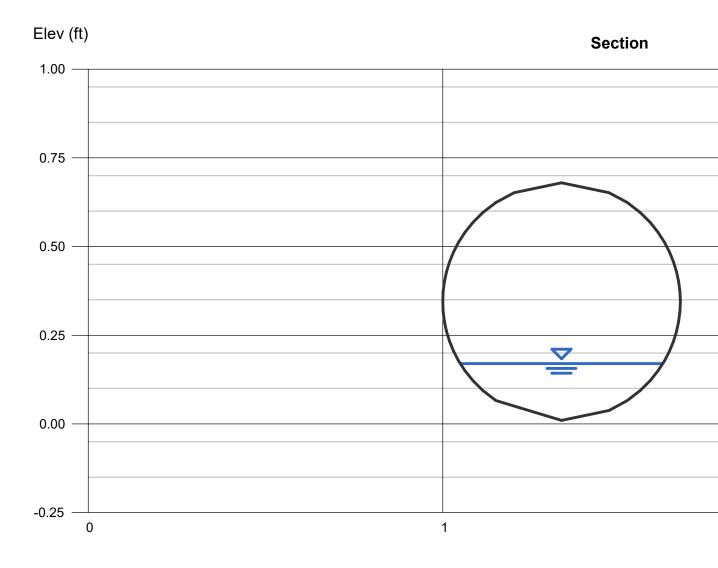


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Feb 1 2023

DOWNSPOUT COLLECTOR 8

Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.22
		Q (cfs)	= 0.460
		Area (sqft)	= 0.10
Invert Elev (ft)	= 0.01	Velocity (ft/s)	= 4.52
Slope (%)	= 2.00	Wetted Perim (ft)	= 0.82
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.32
		Top Width (ft)	= 0.63
Calculations		EGL (ft)	= 0.54
Compute by:	Known Q		
Known Q (cfs)	= 0.46		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Feb 1 2023

DOWNSPOUT COLLECTOR 13

Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.16
		Q (cfs)	= 0.250
		Area (sqft)	= 0.07
Invert Elev (ft)	= 0.01	Velocity (ft/s)	= 3.83
Slope (%)	= 2.00	Wetted Perim (ft)	= 0.69
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.23
		Top Width (ft)	= 0.57
Calculations		EGL (ft)	= 0.39
Compute by:	Known Q		
Known Q (cfs)	= 0.25		

Section 6

Swale Calculation

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 24 2023

SWALE

ırapez	oldai
Bottom	Width

= 3.00(ft) Side Slopes (z:1) = 3.00, 3.00

Total Depth (ft) = 1.00 Invert Elev (ft) = 0.01Slope (%) = 6.89N-Value = 0.024

Calculations

Compute by: Known Q Known Q (cfs) = 0.29

Highlighted

Depth (ft) = 0.05Q (cfs) = 0.290Area (sqft) = 0.16Velocity (ft/s) = 1.84 Wetted Perim (ft) = 3.32Crit Depth, Yc (ft) = 0.07Top Width (ft) = 3.30EGL (ft) = 0.10

Elev (ft) Depth (ft) **Section** 2.00 -1.99 1.50 -- 1.49 1.00 -- 0.99 0.50 -- 0.49 0.00 -- -0.01 -0.50 -0.51 1 2 7 9 0 3 4 5 6 8 10 11

Reach (ft)

Section 7

WQv Calculation

WATER QUALITY CALCULATIONS HOSPICE CENTER O'FALLON, MISSOURI PROJECT NO. M22-8498

Calculation for Hospice Center Water Quality Volume

Water Quality Volume for Proposed Tributary #1

 $WQv = [(P)(Rv)(A)(43,560 \text{ ft}^2)]/12$

P = Rainfall Depth = 1.14 inches

Rv = Volumetric Runoff Coefficient = 0.05 + 0.009(I) = 0.05 + 0.009(34) = 0.356

A = Area in Acres = Pavement/Buildings = 0.153 Ac.

Landscaping/Grass = 0.297 Ac.

 $\mathbf{WQv} = [(1.14)(0.356)(0.45 \text{ Ac.}*43,560 \text{ ft}^2/\text{Ac.})]/12$

 $WOv = 667 \text{ ft}^3$

Water Quality Volume for Proposed Tributary #2

 $WQv = [(P)(Rv)(A)(43,560 \text{ ft}^2)]/12$

P = Rainfall Depth = 1.14 inches

Rv = Volumetric Runoff Coefficient = 0.05 + 0.009(I) = 0.05 + 0.009(85) = 0.813

A = Area in Acres = Pavement/Buildings = 0.995 Ac.

Landscaping/Grass = 0.175 Ac.

 $\mathbf{WQv} = [(1.14)(0.813)(1.17 \text{ Ac.}*43,560 \text{ ft}^2/\text{Ac.})]/12$

 $WQv = 3.936 \text{ ft}^3$

Extended Detention Water Quality for Tributary #1

Extended Detention WOv = WOv(1/2)

Extended Detention $WQv = 334 \text{ ft}^3$

Extended Detention Water Quality for Tributary #2

Extended Detention WQv = WQv(1/2)

Extended Detention $WQv = 1.968 \text{ ft}^3$

Pretreatment Calculation for Proposed Tributary #1

 $V_p = 0.25 \text{WQV} = 0.25 * 334 = 83.5 \text{ ft}^3$

Forebay Volume = $260 \text{ ft}^3 > 83.5 \text{ ft}^3$, Pretreatment has been accounted for

Pretreatment Calculation for Proposed Tributary #2

$$V_p = 0.25 WQv = 0.25*1,968 = 492 \text{ ft}^3$$

Forebay Volume = $495 \text{ ft}^3 > 492 \text{ ft}^3$, Pretreatment has been accounted for

Nested Surface Sand Filter Calculation

$$A_{sf} = (0.066)(WQ_v)$$

 $A_{sf} = (0.066)(1,547) = 102 \text{ ft}^2$, Forebay area = 516 ft^2

$$A_f = \frac{(WQ_v)(d_f)}{[(k)(h_f + d_f)(t_f)}$$

$$WQ_v = 1,547 \text{ ft}^3 \qquad h_f = 2.5 \text{ ft.}$$

$$d_f = 1.5 \text{ ft} \qquad t_f = 1.67 \text{ days}$$

$$k = 3.5 \text{ ft/day}$$

$$A_f = ((1,547)(1.5))/((3.5)(2.5+1.5)(1.67)) = 100 \text{ ft}^2$$

$$V = \frac{H}{3} (A_1 + A_2 + \sqrt{A_1 A_2})$$

$$H = 1.0 \text{ ft.}$$
 $A_1 = 700 \text{ ft}^2$
 $A_2 = 1,788 \text{ ft}^2$

$$\begin{split} V_{top} &= 1/3(700 + 1788 + (700*1788)^{\circ}0.5 = 1,469 \text{ ft}^{\circ}3 \\ V_{filter\ media} &= (0.4)(700)(1.5) = 420 \text{ ft}^{\circ}3 \\ \textbf{V_{total}} &= V_{forebay} + V_{top} + V_{filter\ media} + V_{ED} = 516 + 1,469 + 420 + 334 + 1968 = \textbf{4,707 ft}^{\circ}3 \end{split}$$

 $V_{total} = 4,707 \text{ ft}^3 > 4,603 \text{ ft}^3 \text{ Therefore, all water quality volume is accounted for.}$

WORKSHEET 2

PROJECT:	M22-8498A	w22-8498A									
LOCATION:	Hospice Ce	nter; Water Quality Drainage Area									
DESIGNED BY:	CJD			DATE:	1/11	/2023		Area :	TRIB1		
CHECKED BY:	ESK			DATE:	1/11	/2023	Pre	esent	✓ Devel	oped	
Soil name and hydro (Appendix			Cover description (Cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)					Area Ac.	Area (Ac.)	Product of CN x Area	
D		IMPERVI	OUS PAVED F	PARKING, RO	OFS, DRIVEW	AYS, ETC.	98	1.15	1.150	112.70	
D		OPEN SI	PACE-GOOD	CONDITION (GRASS COVE	R > 75%)	80	0.49	0.490	39.20	
D			STREE	TS/ROADS-G	RAVEL		91	0.01	0.010	0.91	
							0	0	0.000	0.00	
							0	0	0.000	0.00	
								Total =	1.650	152.81	
Frequency (YR.) =		1 2 25 100 Weighted CN =					93				
Rainfall, P (24-HOUR)) (IN.) =	2.50 3.10 5.60 7.21 S=						0.75			
Runoff, Q (IN.)=		1.78	2.35	4.79	6.38				I =	0.15	

WORKSHEET 3

SHEET FLOW				Pre	esent	✓ Develo	pped
SEGMENT ID =	A	-B					
SURFACE DESCRIPTION =	GRASS-DEN	SE GRASSES					
MANNING'S n VALUE =	0.	24					
FLOW LENGTH (<100 FT.) =	10	00					
2 YEAR, 24 HOUR RAINFALL =	3.	10					
LAND SLOPE =	0.0)43					
T _t =	0.	18					0.18
CONCENTRATED FLOW							
SEGMENT ID =	B-C						
SURFACE DESCRIPTION =	UNPAVED						
FLOW LENGTH =	72						
WATERCOURSE SLOPE, s =	0.170						
AVERAGE VELOCITY, V =	6.65						
T _t =	0.00						0.00
CHANNEL FLOW							
SEGMENT ID =							
SEGMENT TYPE =							
PIPE DIAMETER, (FT) =							
SEGMENT DESCRIPTION =							
CROSS AREA, a (FT^2) =							
WETTED PERIMETER, P (FT) =							
HYDRAULIC RADIUS, r (FT) =							
CHANNEL SLOPE, s (FT/FT) =							
MANNING'S n VALUE =							
AVERAGE VELOCITY, V (FT/s) =							
FLOW LENGTH, L (FT) =							
T _t =							0.00
total T _C (hrs.) =							0.18

WORKSHEET 4

Drainage Area, A (mi^2) =		0.0026		Rainfall Distribution =			II
Runoff Curve Number, CN =		93		Ponds/Swamps Area =			0
Time of Concentration, T_c =		0.18				Present	✓ Developed
Frequency (YR.) =	1	2	25	100			
Rainfall, P (24-HOUR) (IN.) =	2.50	3.10	5.60	7.21			
Initiall Abstraction, I _a =	0.151	0.151	0.151	0.151			
I _a /P =	0.06	0.05	0.03	0.02			
Unit Peak Discharge, q _u =	854	862	881	892			
Runoff , Q =	1.78	2.35	4.79	6.38			
Pond/Swamp Factor, F _p =	1	1	1	1			
Peak Discharge, q _p =	3.95	5.27	10.97	14.80			

Appendix – Supporting Documents

NRCS Hydrologic Soils Group Map
NRCS Saturated Hydraulic Conductivity

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: St. Charles County, Missouri Survey Area Data: Version 23, Sep 7, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Sep 17, 2018—Oct 24. 2018 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
60124	Harvester-Urban land complex, 2 to 9 percent slopes	С	15.2	100.0%			
Totals for Area of Interest			15.2	100.0%			

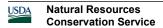
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

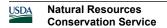
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

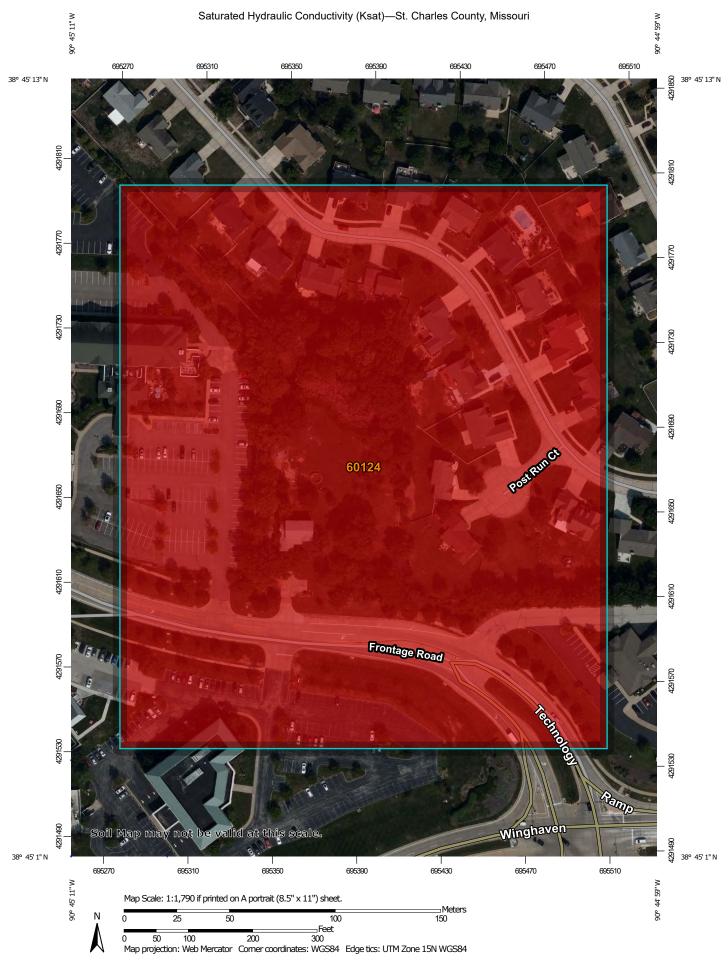
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

= 3.0559

Not rated or not available

Soil Rating Lines

= 3.0559

Not rated or not available

Soil Rating Points

= 3.0559

Not rated or not available

Water Features

Streams and Canals

Transportation

Interstate Highways

US Routes

Rails

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: St. Charles County, Missouri Survey Area Data: Version 23, Sep 7, 2022

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Sep 17, 2018—Oct 24, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Saturated Hydraulic Conductivity (Ksat)

Map unit symbol	Map unit name	Rating (micrometers per second)	Acres in AOI	Percent of AOI			
60124	Harvester-Urban land complex, 2 to 9 percent slopes	3.0559	15.2	100.0%			
Totals for Area of Interest			15.2	100.0%			

Description

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity is considered in the design of soil drainage systems and septic tank absorption fields.

For each soil layer, this attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

The numeric Ksat values have been grouped according to standard Ksat class limits.

Rating Options

Units of Measure: micrometers per second Aggregation Method: Dominant Component Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Component" returns the attribute value associated with the component with the highest percent composition in the map unit. If more than one component shares the highest percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher attribute value should be returned in the case of a percent composition tie. The result returned by this aggregation method may or may not represent the dominant condition throughout the map unit.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Fastest

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Interpret Nulls as Zero: No

This option indicates if a null value for a component should be converted to zero before aggregation occurs. This will be done only if a map unit has at least one component where this value is not null.

Layer Options (Horizon Aggregation Method): Depth Range (Weighted Average)

For an attribute of a soil horizon, a depth qualification must be specified. In most cases it is probably most appropriate to specify a fixed depth range, either in centimeters or inches. The Bottom Depth must be greater than the Top Depth, and the Top Depth can be greater than zero. The choice of "inches" or "centimeters" only applies to the depth of soil to be evaluated. It has no influence on the units of measure the data are presented in.

When "Surface Layer" is specified as the depth qualifier, only the surface layer or horizon is considered when deriving a value for a component, but keep in mind that the thickness of the surface layer varies from component to component.

When "All Layers" is specified as the depth qualifier, all layers recorded for a component are considered when deriving the value for that component.

Whenever more than one layer or horizon is considered when deriving a value for a component, and the attribute being aggregated is a numeric attribute, a weighted average value is returned, where the weighting factor is the layer or horizon thickness.

Top Depth: 0

Bottom Depth: 60

Units of Measure: Inches